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A B S T R A C T

A timely transition towards a sustainable carbon-neutral power sec-
tor requires modern power systems to host increasing numbers of
renewable energy sources (RES) and other non-traditional distributed
energy sources (DER). However, the stochastic nature and limited
controllability of these resources undermines the efficiency of current
power system and market operations and creates new forms of phys-
ical and financial risks. Modern and future operational paradigms
must internalize and mitigate these risks to ensure availability of sus-
tainable electric power at a socially acceptable cost.

This dissertation proposes uncertainty- and risk-aware decision-
making tools for transmission and distribution systems to account
for RES and DER stochasticity. The proposed methods leverage mathe-
matically and computationally advantageous properties of a chance-
constrained optimal power flow formulation to internalize statisti-
cal uncertainty parameters and predefined risk levels into generator
dispatch and reserve decisions. As a result, these decisions are im-
munized against uncertain RES and DER generation at minimal sys-
tem cost, while avoiding a sub-optimal over- or underestimation of
reserve requirements. Additionally, this dissertation explores data-
driven and learning-based modifications of the proposed approaches
to ensure robustness against estimation errors of uncertainty param-
eters.

Furthermore, this dissertation shows that convex properties of
the proposed chance-constrained framework yield risk-aware price
signals that enable an efficient stochastic electricity market design.
Specifically, separate energy and reserve prices that capture the ex-
pected system state, its inherent uncertainty and the risk acceptance
of its participants enable a fully ex-ante settlement of the market.
The proposed chance-constrained market design overcomes typical
shortcomings of scenario-based stochastic market designs related to
computational tractability and per-scenario trade-offs and fulfills de-
sirable market properties for all outcomes of the underlying uncer-
tainty. Additionally, this dissertation demonstrates that the volatility
of system state-variables can be controlled in this market via suitable
variance metrics and how risk-averse behavior and asymmetric infor-
mation among market participants can be modeled. The proposed
market design and prices are analyzed for distribution (retail) and
transmission (wholesale) markets.
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Z U S A M M E N FA S S U N G

Die zeitnah notwendige Dekarbonisierung des Stromsektors erfordert
signifikante Investitionen in erneuerbare Energieanlagen (EE) und in
flexible, dezentrale Energieressourcen (DER). Das stochastische und
nur eingeschränkt regelbare Einspeiseverhalten dieser Ressourcen be-
einträchtigt jedoch die Wirksamkeit und Effizienz derzeitiger Metho-
den des Stromnetzbetriebes und des Stromhandels und schafft neue
Formen physikalischer und finanzieller Risiken.

Diese Dissertation untersucht stochastische Optimierungsmodelle,
die in der Gegenwart volatiler Einspisung von EE und DER einen
sicheren und kostengünstigen Betrieb von Verteil- und Übertragungs-
netzen gewährleisten. Die vorgeschlagenen Modelle und Lösungsme-
thoden nutzen dafür mathematisch und numerisch vorteilhafte Eigen-
schaften stochastischer Optimierung mit probabilistischen Nebenbe-
dingungen (englisch chance constraints) aus, um statistische Parameter
der EE und DER Einspeisung sowie explizite Risikobewertungen in
Planungsentscheidungen über Generatoreinsatz und Reservevorhal-
tung einzubeziehen. Dadurch werden diese Entscheidungen zu mini-
malen zusätzlichen Systemkosten immunisiert, während eine subopti-
male Über- oder Unterschätzung des Reservebedarfs vermieden wird.
Weiterhin untersucht diese Dissertation datengestützte Modifikatio-
nen der entwickelten Optimierungsmodelle, um den Effekt eventuel-
ler Fehler bei der Schätzung statistischer Parameter abzuschwächen.

Die zunächst für einen risikobewussten Netzbetrieb entwickelten
mathematischen Optimierungsprobleme sind konvex und erlauben
daher eine markttheoretische Ableitung von Preissignalen zur Ent-
wicklung eines praktikablen stochastischen Strommarktdesigns. Ins-
besondere kann gezeigt werden, dass separate Energie- und Reserve-
preise den erwarteten Systemzustand, statistische Informationen über
unsichere Parameter und die Risikoakzeptanz der Markteilnehmer
transparent abbilden. Dies ermöglicht eine planungssichere Beschaf-
fung der notwendigen Erzeugungs- und Übertragungsresourcen und
erhöht somit Versorgungssicherheit und -effizienz. Das vorgeschlage-
ne Marktdesign mit chance constraints vermeidet typische Probleme
szenariobasierter stochastischer Marktdesigns in Bezug auf Berech-
nungskomplexität und Transparenz. Die hergeleiteten Preissignale
werden im Detail analytisch untersucht und die Erfüllung notwendi-
ger ökonomischer Kriterien bewiesen. Zusätzlich zeigt diese Disserta-
tion, dass die Volatilität bestimmter Systemvariablen durch geeignete
Varianzmetriken kontrolliert werden kann und wie risikoaverses Ver-
halten sowie asymmetrische Informationen unter den Marktteilneh-
mern modelliert werden können.
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N O M E N C L AT U R E

The following notations are shared by Chapters 3–8. Some chapter-
specific modifications and additions are introduced within the respec-
tive chapters. Appendices A–C slightly modify some notations to
present the introduced concepts concisely.

Sets:

Ai For radial networks: Set of ancestor nodes of node i

Ci For radial networks: Set of children nodes of node i

Di For radial networks: Set of downstream nodes of node i, in-
cluding i

G Set of generators

L Set of network edges (lines)

N Set of network nodes (buses)

N+ For radial networks: Set of network nodes without root node.

P Distributional ambiguity set

U Set of uncertain (renewable) generators

R Set of real numbers

R+ Set of non-negative real numbers

Variables and Parameters:

ai Generator cost function parameter (first-order)

bi Generator cost function parameter (second-order)

b Suceptance

c0−2,i Generator cost function parameters (standard form)

e Vector of ones

fp Vector of active power flows, indexed by fpij, ij ∈ L (in radial
systems indexed by fpi , i ∈ N+)

fq Vector of active power flows, indexed by fqij, ij ∈ L (in radial
systems indexed by fqi , i ∈ N+)

g Conductance

p Vector of active net injections, indexed by pi, ∀i ∈ N

pD Vector of active power demand, indexed by pD,i, i ∈ N

pG Vector of controllable active power generation, indexed by
pG,i, i ∈ G, limited by [pmin

G,i ,p
max
G,i ]

xvi



nomenclature xvii

pU Vector of uncertain active power generation, indexed by
pU,i, i ∈ U

qD Vector of reactive power demand, indexed by qD,i, i ∈ N

qG Vector of controllable active power generation, indexed by
qG,i, i ∈ G, limited by [qmin

G,i ,q
max
G,i ], i

qU Vector of uncertain active power generation, indexed by
qU,i, i ∈ U

s Apparent power flow

t Optimization auxiliary variable

u Vector of nodal voltage magnitudes squared, indexed by ui =
v2i , i ∈ N, limited by [umin

i ,umax
i ]

v Vector of nodal voltage magnitudes, indexed by vi, ∀i ∈ N,
limited by [vmin

i , vmax
i ]

x Reactance

y Admittance

zε Risk parameter, typically zε := Φ−1(1− ε)

A For radial systems: Flow sensitivity matrix

B(f) Line susceptance matrix

B(n) Bus susceptance matrix

B(p) Power transfer distribution factor matrix

I Identity matrix

M Matrix of auxiliary decision variables

R Matrix of sensitivity factors related to active power

S Total system uncertainty given by S2 := e>Σe

T Auxiliary matrix of sensitivity factors

X Matrix of sensitivity factors related to reactive power

α Vector of balancing participation factors, indexed by αi, i ∈ G

γ Vector of factors mapping active to reactive power, indexed
by γi, i ∈ N, given by power factor cosφi so that γi :=√
1−cos2φi/cosφi

θ Vector of voltage angles, indexed by θi, i ∈ N

λ Typically, dual multiplier of power balance and energy price

π Price

ρ Optimization auxiliary variable

χ Dual multiplier of balancing adequacy constraint and reserve
price

ω Vector of forecast errors / uncertain injections, indexed by ωi

Σ Variance-Covariance matrix of ω



xviii nomenclature

Φ Cumulative distribution function of the standard normal dis-
tribution

Ω Uncertainty space, ω ∈ Ω

Operators and Modifiers:

·̂ Observed value or estimation based on historical observa-
tions

· Linearization point or mean

·t Additional time index

·̌ Inverse of a matrix

·> Transpose of vector or matrix

conv(·) Convex hull

diag(x) Diagonal matrix with vector x as entries in the main diag-
onal

F(·) Power flow equations

E(·) Expected value

F Risk measure

P(·) Probability

Var(·) Variance

VaR1−ε(·) 1− ε value-at-risk

σ(·) Standard deviation

<(x) Real part of complex number x

=(x) Imaginary part of complex number x

‖·‖2 2-norm



Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 the sustainable power system : certainly uncertain

Availability of electric power at an acceptable cost has, in the last
century, become a central driver of post-industrialized development,
[1], and its sudden shortfall has the potential to shut down entire
continents, [2], [3]. In this century, power systems and their institu-
tional and regulatory frameworks, have to maintain and expand the
availability of electric power, while simultaneously enabling a timely
transition towards a sustainable carbon-neutral power sector, [4]. This
transition, in turn, requires power systems to host more renewable
energy sources (RES) and other non-traditional resources, such as
flexible loads and battery storages. However, the stochastic nature
and limited controllability of these resources challenges the efficiency
and reliability of established concepts in power engineering and eco-
nomics by injecting new forms of exogenous physical uncertainty.

Uncertainty of any source exposes power system operations to a
variety of physical and financial risks. Physical risks are related to the
inability of the system to serve loads, e.g. due to equipment outage
triggered by overload protection systems or destruction, or infeasi-
ble voltage and frequency characteristics. Although not every sys-
tem disturbance leads to load shedding or system collapse, required
corrective actions, repair and maintenance can incur severe financial
implications to the system and its stakeholders. Further, greater un-
certainty can amplify “purely” financial risks, mostly related to more
volatile electricity prices and ad hoc out-of-market corrections that
may challenge the market’s liquidity, efficiency and impedes eco-
nomic long-term planning, [5], [6].

Current operation and planning procedures have been tuned to
high efficiency to mitigate risks from traditional uncertainty, which
are of a relatively low magnitude, e.g. imperfect demand forecasts, or
low probability, e.g. unplanned equipment outages, [7]. For such un-
certainty, automated and distributed frequency and voltage controls,
as well as emergency switching and generator re-dispatch, corrects
any deviation between the expected and real-time system state. How-
ever, necessary temporal control hierarchies (primary, secondary, ter-
tiary control) and their spatial impact (local control, area control, syn-
chronous system) depend on the system operator’s generator sched-
ules (dispatch), which are typically obtained from solving an optimal
power flow (OPF) problem or its variant, [8]. While the exact OPF can
vary between system operators, they are typically deterministic, i.e.

3
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ignore stochastic characteristics of renewable and flexible resources,
and rely on fixed external reserve margins and security heuristics, [9].
These shortcomings amplify physical and financial risks and obstruct
the efficient and reliable accommodation of RES required for the en-
ergy transition.

The work in this dissertation aims to provide methods to miti-
gate and control physical and financial risks in renewable-dominant
power systems by internalizing RES uncertainty into (i) central dispatch
and control decisions, and (ii) price-based coordination mechanisms,
thus rendering them uncertainty- and risk-aware.

• Risk-aware dispatch and control: The work in this part
presents methods for risk-aware dispatch decisions in trans-
mission and distribution systems. These methods extend es-
tablished OPF formulations to account for reserves needed to
ensure sufficient generation and transmission capacity, as well
as compliance with operating limits of system state variables
(e.g. voltage magnitudes). By formulating reserve require-
ments as functions of the available statistical information of the
underlying uncertainty and predefined risk-levels and suitable
balancing control policies, these requirements become endoge-
nous to the decision-making problem. Thus, potentially over-
or under-conservative deterministic reserve requirements are
avoided. Additionally, this part deals with situations where
only partial information on the uncertainty statistics is avail-
able from historical data or some information has to be learned
"on the fly" in an online decision-making process. The resulting
sets of model formulations and solution techniques aim to sup-
port renewable-dominant power system operations by robusti-
fying dispatch decisions against forecast errors at a minimal
additional cost.

• Risk-aware coordination: The work in this part internalizes
the risk-aware OPF formulations described above into electricity
markets. Convex properties of these formulations yield efficient
risk-aware price signals that incentivize a system-beneficial be-
havior of all market participants. Here, computing separate en-
ergy and reserve prices that capture the expected system state
and its inherent uncertainty, respectively, enables a fully ex-ante
settlement of the market. Additionally, this part proposes an
approach to control the volatility of system state-variables and
to model risk-averse behavior, as well as asymmetric informa-
tion, among the market participants. The resulting coordina-
tion mechanisms and price analyses for distribution (retail) and
transmission (wholesale) markets aim to enable new stochastic
electricity market designs that internalize the inherent uncer-
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tainty of RES and risk attitudes of market participants and, thus,
support the transition towards a sustainable power sector.

1.2 scope and challenges

This dissertation focuses on internalizing available statistical infor-
mation on parameter uncertainty and risk evaluation into short-term
decision-making tools. These look-ahead (day-ahead, hour-ahead,
minutes-ahead) decision-making processes rely on OPF formulations
that capture the steady-state physics of the analyzed power system.

1.2.1 The New Role of Distribution Systems

In traditional power systems, electrical power is generated in central
large-scale power plants. High-voltage transmission systems provide
efficient long-distant transportation of the power to load points or
load centers, where it is transformed to lower voltage levels. Thus,
low-voltage distribution systems haven been designed for the pas-
sive role of ensuring power flow from the, so called substation, trans-
former towards commercial or residential loads. This passive and
uni-directional paradigm in distribution systems is challenged by
the growing deployment of distributed energy resources (DERs), e.g.
rooftop photovoltaic (PV), battery storages, and electric vehicles (EVs),
in combination with communication-based digital control systems,
e.g. smart meters and smart appliances. For example, power produc-
tion at the premises of end-consumers may lead to so-called reverse
power flows, i.e. from the customer towards the substation, and in-
feasible voltage profiles [10], [11]. Further, uncontrollable small-scale
generation that is directly used to serve customer load, so called
behind-the-meter generation, increases the uncertainty and volatility
of net demand visible to the system operator. As a result, uncer-
tainty and volatility at the substation increases, too, requiring more
reserve and flexibility from the transmission system, [12], and impact-
ing equipment degradation, [13].

On the other hand, and in addition to such benefits to the DER op-
erator as reduced electricity bills or partial autonomy from the utility,
DERs also have the potential to provide a broad range of beneficial
services to the utility, [12], [14]. Controllable battery storages and
flexible demand can actively shape the system load profile and, thus,
mitigate the effects of uncontrolled generation from PV and wind,
[15]–[17] and peak-load scenarios, [18]. This also includes voltage
control and active power loss reduction by leveraging properties of
power electronic inverters, [19]–[22], and vehicle-to-grid capabilities
of EVs, [14], [23].

However, many advantages of DERs remain unlocked due to the
centralized nature in distribution system operations, [12], and their
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inability to explicitly internalize uncertainty and risk in their dispatch
and coordination processes. This dissertation aims to address some
challenges related to the uncertain behind-the-meter generation in
the presence of controllable DERs by proposing stochastic decision-
making and pricing frameworks tailored towards active distribution
systems.

1.2.2 Enabling Distributed Resources

Leveraging demand-side flexibility is envisioned as one of the central
requirements for the successful transition to a RES-dominant power
system, [24], [25]. Effective load shaping via demand response (DR)
programs can counteract short-term volatility of RES and support both
distribution and transmission system operations, [12]. However, ex-
isting DR programs mainly target commercial and industrial loads
that are relatively homogeneous in size and technical capabilities and,
thus, are fairly easy to price and interface with energy managements
systems used by utilities [25]. On the other hand, aggregated resi-
dential loads also have the potential to participate in load shaping,
i.e. by leveraging thermal inertia of cooling and heating systems or
incentivizing individual peak-load reduction, [26], [27]. However, ag-
gregation of these small-scale distributed resources is challenged by
their heterogeneous characteristics and electricity usage patterns and
preferences. Additionally, resource specific load control is obstructed
by extensive requirements of communication infrastructure and asso-
ciated cybersecurity considerations, [28], [29].

Hence, effective deployment of large numbers of small-scale flex-
ible resources requires methods to learn customer preferences and
behavior, while relying on passive one-way communication channels,
[30]. However, current aggregation and DR deployment strategies, e.g.
by commercial DR service providers (“aggregators”), are mainly con-
cerned with optimizing DR remuneration (i.e. profit), while ignoring
the physical context in which the individual resources are operated
in, [31], [32]. Resulting DR actions may, therefore, be infeasible due to
power flow or voltage level violations in the distribution system.

The work in this dissertation addresses the challenges related to de-
ploying flexible resources in distribution systems by studying meth-
ods of uncertainty-aware and learning-based distribution system op-
eration. This includes the development of a learning framework that
continuously infers statistical information from the behavior of res-
idential DR participants, as well as uncertainty-aware and physics-
informed price information that supports efficient DER deployment.



1.2 scope and challenges 7

1.2.3 Uncertainty and Variability at Scale

In the past, power supply from central large-scale generators via an
interconnected transmission system significantly improved the sys-
tem’s cost efficiency and reliability. Large generators can be operated
at greater fuel-efficiency and, with the exception of nuclear power
plants, [33], are characterized by lower capacity-weighted investment
costs, [34]. At the same time, a wide-ranging aggregation of loads
through meshed trans-regional transmission networks largely offset
demand variations at smaller time scales and their remaining interday
trends became fairly predictable, [7], [8].

Investments in RES similarly benefit from the economics of scale.
The per-megawatt investment cost for wind turbines drops signifi-
cantly if they are aggregated in larger wind parks, [35], and the Inter-
national Energy Agency predicts that utility-scale PV investments will
outpace those in distributed PV in 2021, [36]. Because the exact gen-
eration output from wind and PV depends on random atmospheric
events, i.e. turbulent wind speeds and cloud movements, utility-scale
RES inject a new level of uncertainty and variability into the transmis-
sion system.

These large-scale uncertainty sources in combination with high
numbers of intermittent DERs require new means of quantifying and
allocating reserve capacities to mitigate resulting physical and finan-
cial risks. On the one hand, it is common to internalize potential un-
planned outages of generation or transmission system via preventive
dispatch decisions (so called N-1 criterion), [37]. On the other hand,
current practices to determine reserve requirements related to short-
term RES volatility rely on exogenous and ad-hoc policies, [38]. As
a result, these reserves are often overly conservative, sub-optimally
allocated, or ignorant of the economics of potential reserve providers,
[9].

The work in this dissertation aims to address certain challenges of
transmission-level uncertainty by discussing risk-aware (AC and DC)
OPF formulations that internalize stochastic and spatial information
of uncertain RES into reserve quantification and allocation.

1.2.4 Complex Systems with Complex Markets

One of the central designations of power systems is to provide reli-
able universal access to electric power at socially acceptable cost, thus
linking operational feasibility to economic adequacy. Practical imple-
mentation of this link has, in the past three decades, taken the form
of (competitive) electricity markets. The market-based coordination of
electricity supply, transmission and demand at various time scales
has been shown to significantly improve resource efficiency, reliabil-
ity and transparency, [1], [34], [38], [39]. On the other hand, how-
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ever, coupling a highly complex and dynamic power system with an
equally complex and dynamic economic system, [40], requires careful
market design choices to avoid instabilities that may eventually lead
to failures, such as the 2000-01 Californian electricity shortage, [41].

Current electricity markets have been designed around traditional,
i.e. central, large-scale, controllable, and often high-inertia, forms of
electricity generation, [42]. Recent market design developments that
acknowledge a shift in the generation-mix towards stochastic RES and
emerging means of storage and control have so far been “primarily
incremental in nature”, [38], benefiting mostly from enhanced compu-
tational technologies. The market clearing procedures resulting from
these incremental changes have brought some efficiency gains, but at
the same time suffer from acceptance issues related to intransparent
price formation processes, [9], [38].

One of the main challenges of the RES-dominated electricity mar-
ket is to maintain resource adequacy, i.e. create incentives for the pro-
vision of flexible energy and reserve capacity such that short term
forecast deviations and fluctuations can always be balanced, [42].
This requires an efficient and transparent examination of (potentially
unused) reserve capacity that internalizes spatio-temporal stochastic
characteristics of the underlying uncertainty. The resulting remuner-
ation of energy and reserve providers must be incentive compatible (i.e.
encourage system beneficial behavior) and ensure cost recovery (i.e.
ensure at least a zero profit for all participants), independent of the
method and outcome of internalizing stochastic considerations, [9],
[43]. Finally, stochastic electricity market efficiency depends on risk-
allocation, i.e. market participants that are able to mitigate or hedge
against risk at least cost should carry the system risk, [42].

The work in this dissertation addresses some challenges related to
stochastic electricity markets to enable uncertainty-aware energy and
reserve prices that comply with desirable market properties for all
outcomes of the uncertainty. Additionally, a risk-market for efficient
risk-evaluation and -allocation is proposed and discussed.

1.3 reader’s guide

The chapters of this dissertation are related and reference each other,
but are edited such that each chapter can be read and understood
independently. The central chapters 3–8 are split among Parts II and
III. Part II, consisting of Chapters 3–5, is concerned with optimizing
the centrally dispatched power system under uncertainty and Part III,
consisting of Chapters 6–8, establishes risk-aware formulations for
electricity markets. Chapters 4–8 are based on [P1]–[P5] and each
include an illustrative case study with numerical experiments that
demonstrate applicability and performance of the proposed methods
and formulations.
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The content of each chapter is outlined below:

• Chapter 2 reviews relevant publications on risk-aware dispatch
and electricity markets. It introduces and surveys existing meth-
ods that address some of the challenges outlined above and pro-
vides reference for the contributions of this dissertation.

• Chapter 3 derives risk-aware OPF formulations for transmission
and distribution systems, using chance constraints. Model for-
mulations in subsequent chapters 4–8 extend or modify these
models.

• Chapter 4 proposes a data-driven distributionally robust ap-
proach for the operation of an active distribution grid under the
uncertainty of behind-the-meter resources. This chapter shows
how optimized DER schedules and control policies can be immu-
nized against uncertainty in the probabilistic models of forecast
errors obtained from available historical data points. This chap-
ter is based on our work in [P1].

• Chapter 5 describes an online learning framework that contin-
uously learns the price sensitivity of DR resources in a distribu-
tion system, while co-optimizing generation and reserve alloca-
tion from controllable DERs. Additionally, this chapter discusses
learning performance guarantees and deals with distributional
ambiguity of the response model. This chapter is based on our
work in [P2].

• Chapter 6 proposes a stochastic coordination and pricing
scheme for DERs in distribution systems. The chapter proves the
existence of a competitive equilibrium in the proposed market
and comprehensively discusses price components and DER in-
centives. Further, the previously lossless OPF formulation from
Chapter 3 is extended towards linearized losses. This chapter is
based on our work in [P3].

• Chapter 7 generalizes the results from Chapter 6 towards a com-
plete (meshed) AC system formulation and shows how stochas-
tic uncertainty information can be internalized into reserve al-
location and pricing. Additionally, this chapter shows how the
volatility (variance) of state-variables can be controlled. This
chapter is based on our work in [P4].

• Chapter 8 develops a stochastic electricity market based on
Chapters 6 and 7 by incorporating risk-averse attitudes of mar-
ket participants and the market operator. The chapter proves
the existence of interpretable prices and risk allocations for con-
tinuous and discrete cases. This chapter is based on our work
in [P5].
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• Chapter 9 concludes this dissertation, summarizes its key find-
ings and provides a brief outlook on future research directions.

Additionally, some preliminaries and theory used in this disserta-
tion are reviewed in Appendices A–C:

• Appendix A reviews convex and conic optimization theory.

• Appendix B derives power flow equations and introduces the
notion of optimal power flow (OPF).

• Appendix C introduces fundamental concepts and vocabulary
of (electricity) markets.



2
L I T E R AT U R E R E V I E W

This chapter consists of three sections. Section 2.1 surveys current
goals and stochastic approaches in power system operation, dispatch
and control. The bedrock of this discussion is the chance-constrained
optimal power flow (CC-OPF) problem, its solution approaches, modi-
fications and applications. Section 2.2 provides a comprehensive dis-
cussion of current approaches and challenges to stochastic electricity
markets, pricing under uncertainty and allocation of risk and reserve.
Finally, Section 2.3 summarizes the contributions of this dissertation
relative to the existing literature and provides a brief impact state-
ment.

2.1 power system dispatch under uncertainty

Power system operations are primarily driven by two considerations.
First, the total system load is at most times lower than the installed
generation (and transmission) capacity, so that there exist numerous
combinations of generator outputs that satisfy all loads with respect
to the system’s physical constraints (e.g. transmission capacity and
voltage levels). Finding the optimal (least cost) combination of genera-
tion levels to meet system demand is called the economic dispatch prob-
lem. Finding an economic dispatch solution that results in physically
feasible power flows is called optimal power flow (OPF) problem. (See
Appendix B and [8], [44].) Second, the system is subject to real-time
deviations from the scheduled conditions due to load and weather
variations or unplanned equipment outages. To ensure a stable sys-
tem between dispatch intervals (one hour to 15 minutes), suitable reg-
ulation means and fast reserve capacity must be in place to mitigate
such variations. These reserve requirements additionally constrain
the OPF solution space and thus establish a connection between the
reliability of the power system and its economic operation.

2.1.1 Pursuing System Balance

The main objective in steady-state power system analyses, in tradi-
tional OPF problems, [45]–[49], and in this dissertation, is to match
generation and load, i.e. to ensure power balance. However, as pointed
out in [50], balancing generation and load is an extremely complex
task, whose goal is not only economic operation, but also system sta-
bility. In fact, the idea of a perfect power balance is rather abstract and
achieving it impossible, [50], considering that a typical power system

11
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includes hundreds to thousands of generators and millions of loads,
each subject to individual variations at various time scales. Hence, we
follow [51] and call the power system stable if it is able to remain in or
return to a state of equilibrium characterized by a nominal frequency,
acceptable voltage levels, and long-term feasible operating conditions
for all generation and transmission equipment assets.

Frequency control seeks to manage an active power mismatch, also
called (area) control error, [7], [8], [51]. In the presence of generation
from conventional generators, immediate small mismatches between
the system load and generation are instantaneously balanced via the
kinetic energy stored in their high-inertia spinning rotors, [8]. Thus,
a generator’s electric power injected into the grid may differ from the
mechanical power injected into its rotor shaft, leading to a loss of ro-
tational frequency if mechanical power is too low and vice versa.1 If
an observed frequency deviates beyond a predefined threshold, for
example, as a result of larger imbalances, the power input of one or
multiple generators must be corrected accordingly. In first instance,
this correction is achieved via automatic generator control (AGC). While
at traditional steam-turbines AGC was achieved via frequency depen-
dent governor systems, modern systems rely on fast digital control
signals, [52]. In fact, with increasing amounts of inverter-connected
generation resources, such as solar farms or battery storages, also syn-
thetic “inertia” provision from power electronic systems has become
a highly discussed topic, [53]–[55].

Following this immediate and local primary imbalance response to
counteract frequency drifts, slower secondary and tertiary control units
participate in restoring nominal frequency and optimal economic dis-
patch, respectively, by adapting their power output based on prede-
fined area control participation or explicit operator commands. Ta-
ble 2.1 shows an overview of this control hierarchy and the reserves
associated with the different response time scales. This approach is
international common practice, with some modification or alternate
definitions for each system operator or regulatory institution, [56].

In high-voltage meshed transmission systems, voltage control
schemes, on the other hand, mainly deal with the need to ensure
sufficient provision of reactive power. At network nodes (buses) that
host generators, voltage is locally controlled by the generator’s auto-
matic voltage regulators, [8], [44], [56]. At load buses (substations)
or interconnection buses, local voltage and reactive power controls
can be implemented via explicit voltage support services from larger
loads and DERs, [56], [57], or power-electronic FACTS technology, [58].
However, voltage differences caused by power flows from generation
to load buses, are relatively small in high-voltage transmission sys-

1 This relationship is captured in the so called swing equation Adωdt = Pm − Pe, where
Pm and Pe denote mechanical and electrical power, respectively, A is a generator
parameter capturing its inertial characteristics, and ω is the generator frequency, [8],
[50].
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Primary Control: Local and
automatic control with a re-
sponse within seconds.
(To stabilize frequency.)

Regulation Reserve: Reserve
generation capacity available
within seconds to minutes.
Called automatically via AGC

or fast control signals.Secondary Control: Largely
automatic, local and area wide
control within seconds to min-
utes. (To recover nominal fre-
quency.)

Operation Reserve: Reserve
generation capacity available
within minutes to hours.
Called semi-automatically or
manually.Tertiary Control: Operator-

driven actions within minutes
to hours (To ensure economic
and long-term feasible opera-
tion).

Table 2.1: Hierarchy of frequency control and related reserves.

tems, [8], [44]. In distribution systems with medium and low voltage
levels, on the other hand, reactive and active power flows between
buses have a higher impact on voltage differences. This effect is am-
plified by the typically radial structure of distribution systems and
must be mitigated by additional local control actions, [59].

2.1.2 Reserves for Corrective Actions

Corrective actions to ensure system balance and acceptable voltage
levels, require sufficient and deliverable reserve capacity. Table 2.1 item-
izes the non-standardized reserve definitions of different system op-
erators, [56], as two types characterized by their response time and
means of activation. Regulation reserves support primary and sec-
ondary (frequency) control actions based on predefined policies and
are automatically activated by AGC or other control systems to reg-
ulate immediate power imbalances that threaten frequency stability.
Operation reserves have slower activation times and are subsequently
called by secondary and tertiary control systems to return the system
to nominal operations, e.g. rectify overloads caused by previous con-
trol actions, or restore optimal economic dispatch conditions.

To date, most system operators adopt deterministic criteria to en-
sure sufficient quantities of regulation and operation reserves, [60],
[61]. Most of these policies are ignorant to the stochastic characteris-
tics of loads and RES injections and require reserves as a percentage
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of generation or peak load, see e.g. [62]. Recently, some system oper-
ators have started to procure reserves based on statistical rules such
as the e.g., 95-percentile rule in ERCOT, [63], the (5+7) rule in CAISO,
[64], or the “dynamic reserve rating” of the German transmission sys-
tem operators (TSOs), [65]. However, even if sufficient capacity is avail-
able in the system, these reserves may not be deliverable in real time
due to adverse locational effects that cause transmission overloads or
voltage level violations, [7], [60]. This problem can be overcome by
solving uncertainty-aware OPF problems that co-optimize generation
set points and reserve allocation by explicitly modeling stochastic re-
sources and corresponding balancing control policies, [P1]–[P5], [7],
[66]–[69].

2.1.3 Stochastic and Robust Approaches

Consider an OPF with uncertain parameters (e.g. RES injections) for-
mulated as a generic optimization problem:

min
x

f0(x,ω) (2.1a)

s.t. fi(x,ω) = 0 i = 1, ...,n (2.1b)

fi(x,ω) 6 0 i = n+ 1, ...,m, (2.1c)

where x ∈ Rd is the vector of decision variables (e.g. generation
levels) and ω ∈ Ω is the random vector corresponding to uncer-
tain parameters. Objective (2.1a) seeks to minimize, e.g., costs or
system losses with respect to the underlying model of power system
physics, enforced as equality constraints in (2.1b), and system limits,
enforced as inequality constraints in (2.1c). Noticeably, due to their
dependency on ω, functions fi(x,ω), i = 0, ...,m, become random
variables, thus obstructing direct methods of solving (2.1), [70].

A broad strand of literature proposed scenario-based stochastic
programming to solve OPF problems in the form of (2.1), [43], [67],
[71]–[79].2 Here, an optimal decision x∗ is obtained by decomposing
uncertainty space Ω into a finite set of discrete scenarios {ωs}s∈S and
minimizing the total probability-weighted cost of all scenarios. Ad-
ditionally, scenario-based stochastic programming typically models a
two-stage process that introduces corrective actions as additional de-
cision variables us, which can be chosen after outcome ωs has been
observed, [80], [81]. First-stage decisions x (e.g. generator outputs
and reserve capacity) are shared by all scenarios and second-stage
decisions us (e.g. deployment of reserves) are scenario-specific. A
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scenario-based stochastic programming modification of (2.1) can be
written as:

min
x,{us}

∑
s

P[ωs]f0(x,us,ωs) (2.2a)

s.t. ∀s : fi(x,us,ωs) = 0 i = 1, ...,n, (2.2b)

fi(x,us,ωs) 6 0 i = n+ 1, ...,m, (2.2c)

where P[ωs] denotes the probability of scenario ωs. Generation and
reserve schedules obtained from solving stochastic OPF have been
shown to robustify system operation against uncertain RES injection,
while also reducing long-run cost of operations, [77], [79]. Noticeably,
solving (2.2) for every ωs quickly becomes computationally demand-
ing if many scenarios are considered or the studied system is large,
[82]. Thus, most practical scenario-based OPF studies require intri-
cate scenario reduction techniques, [83]–[85], and iterative solution
methods such as Bender’s Decomposition, [76], [79], [86].

Instead of solving (2.2), robust programming seeks to immunize
the decision against the worst-case outcome chosen from a predefined
uncertainty set U:

min
x

sup
ω∈U

f0(x,ω) (2.3a)

s.t. fi(x,ω) = 0 i = 1, ...,n, (2.3b)

fi(x,ω) 6 0 i = n+ 1, ...,m. (2.3c)

Because the robust approach in (2.3) does not require probabilistic in-
formation but only relies on the range of variation of ω captured in
U, [89], computational effort is reduced at the cost of a more conser-
vative (and thus more expensive) solution. The inner maximization
problem in (2.3a), however, may require specialized solution meth-
ods, [79], or problem-specific reformulations depending on the exact
definition of U, [76].

Both approaches in (2.2) and (2.3) aim to internalize the range (vari-
ability) of ω into the decision making process. However, if decision
x∗ is not immunized against all potential outcomes ω, which may
lead to a prohibitively large cost, then there remains a non-zero proba-
bility that operational constraints and system cost will exceed their ac-
ceptable limits. We consider the severity of these violations weighted

2 Notably, scenario-based stochastic programming has been studied extensively in the
context of the stochastic unit commitment problem, [74]–[79], [87], i.e. a mixed-integer
modification of the OPF problem that assigns a discrete on or off status for each gener-
ator via binary variables for higher modeling fidelity. As this dissertation primarily
studies risk-aware extensions to (AC) power flow formulations and leverages convex
properties of the resulting formulations, all generators are assumed pre-committed,
i.e. available for dispatch. Furthermore, the non-convex mixed-integer unit commit-
ment problem can be convexified by solving the initial commitment problem and
then fixing all binary variables to solve the OPF and dispatch the committed genera-
tors, [88].
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by the likelihood of their occurrence as risk. By defining suitable risk-
metrics Fi , [90], we can modify (2.1) to shape decision-inherent risk
such that it becomes acceptable:

min
x

F0[f0(x,ω)] (2.4a)

s.t. Fi[fi(x,ω)] 6 0 i = 1, ...,m. (2.4b)

The central idea of this approach is to solve a deterministic problem
that internalizes risk into its decision making process, as opposed to
solving a stochastic problem with multiple scenarios and probability
weights, thus overcoming the computational complexity of the latter.
Solving the risk-aware OPF as in (2.4) has mainly been enabled by
the seminal work in [7]. Here, the expected cost of system operation
(F0 ≡ E) are minimized under the condition that the probability of
constraint violations does not exceed a predefined limit εi. Such con-
straints can be enforced by limiting the ε-Value-at-Risk (VaRε) such
that Fi ≡ VaRεi , see e.g. [91], and are called chance constraints.

2.1.4 The Risk-Aware Chance-Constrained Optimal Power Flow

Chance-constrained programming, i.e. optimization with probabilis-
tic constraints of the form:

P[fi(x,ω) 6 0] > 1− εi, (2.5)

was originally introduced by Charnes and Cooper in 1959, [92], and
further refined in [93], [94]. Early adaptations for solving OPF under
uncertainty have been reported in [95]–[97], but all of these works re-
quired complex iterative solution approaches or approximations. The
work in [95] highlights the connection of the chance-constrained OPF

problem to loss-of-load probability, an established power system de-
sign metric, and iteratively co-optimizes generator and reserve sched-
ules until the probability of load shedding is below the target value.
Here, the chance-constrained power balance is evaluated ex post via
Monte-Carlo sampling. Similar sampling-based solution approaches
were proposed in [96] to avoid transmission line overloads in the pres-
ence of uncertainty from load and wind generation and in [98] to
mitigate random effects from demand response (DR). Departing from
sample-based probability evaluation, [97] develops a back-mapping
approach to solve an AC Optimal Power Flow (ACOPF) problem with
uncertainty and corrective control. Although the authors linearize the
power flow equations around the expected value of the uncertain vec-
tor, the explicit analytical solution of the underlying probability dis-
tribution function renders the resulting problem highly non-convex
and computationally demanding.

Further progress was enabled by the development of tractable for-
mulations of risk metrics, including value-at-risk and conditional value-
at-risk, [91], [99], which can be used to formulate and approximate
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chance constraints, [S4]. Building on the approximations proposed in
[100], the work in [101] employs convex chance constraint relaxations
to co-optimize an OPF problem with causal balancing control policies
u(x,ω) that are “tuned” by x at decision time and then automatically
ensure the system balance based on the realization of ω. Notably,
this approach is closely related to AGC or other (automatic) primary
and secondary control actions as outlined in Section 2.1.1 above. By
defining a suitable control policy and assuming normally distributed
forecast errors, [7] proposed a tractable and exact reformulation of the
linearized CC-OPF for transmission systems (CC-DCOPF) using convex
second-order conic (SOC) constraints.

The basic structure of the CC-OPF is given as:

min
x

E[f0(x,u(x,ω),ω)] (2.6a)

s.t. fi(x,u(x,ω),ω) = 0 i = 1, ...,n, ∀ω (2.6b)

VaRεi [fi(x,u(x,ω),ω)] 6 0 i = n+ 1, ...,m, (2.6c)

where objective (2.6a) minimizes expected cost (i.e. F0 ≡ E), power
balance (2.6b) is ensured for all ω through u(x,ω), and chance con-
straints (2.6c) are enforced by setting Fi ≡ VaRεi , i = n + 1, ...,m,
which is equivalent to (2.5). Detailed formulations and derivations
are presented in Chapter 3. Balancing control policies u(x,ω) are de-
fined using participation factors that determine the contribution of each
resource to correct the system control error. This concept is common
in power system operations and, effectively, represents a distributed
droop-controlled correction of power imbalances, [44], [89].

The computational tractability of the CC-DCOPF enabled further
improvements and extensions of risk-aware dispatch. Instead of a
system-wide control policy, [102] proposed participation factors that
are sensitive to the source of the imbalance in the network. Non-linear
and piecewise linear balancing participation that captures additional
reserve physics are proposed in [103], and [104] proposes balancing
participation with heterogeneous response times.

The original chance-constrained DC optimal power flow
(CC-DCOPF) from [7] assumes exact knowledge of the parame-
ters of the underlying (normal) distribution. This assumption might
not hold in reality. A data-robust modification that internalizes
potential errors of the estimated mean and variance of the normal
distribution was outlined in [7] and further developed in [105]
using a predefined uncertainty set (or uncertainty “budget”), and in
[P1] using confidence bounds on the estimation accuracy. Similar
to [101], the work in [106] shows how chance constraints can be
conservatively approximated, and thus robustified, if some distri-
butional parameters are unknown. Distributionally robust CC-OPF

formulations that only rely on estimated moments of the underlying
distribution parameters (e.g. mean and variance) and do not make
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a specific assumption on distribution density functions have been
studied in [P2], [107].

To guarantee energy and reserve deliverability, the resulting dis-
patch decision must be feasible with respect to alternating current
(AC) power flow physics. However, ACOPF is already NP-hard in
its deterministic form, [108], and non-linear AC-power flow equa-
tions obstruct deriving a feasible formulation of (2.6b) and (2.6c),
[68]. Thus, the success of a chance-constrained AC optimal power
flow (CC-ACOPF) formulation hinges on finding suitable relaxations to
these equations. While [109], [110] rely on a convex relaxation at the
cost of guaranteeing robustness, [111] proposes a conservative inner
approximation. Alternatively, the work in [68], [112] successfully de-
rive tractable CC-ACOPF formulations by linearizing power flow equa-
tions around an expected point of operation and deriving sensitivity
mappings between the system state-variables and an uncertain ran-
dom vector. Additionally, [68] extends the fist-stage ACOPF solution
with statistics-informed reserve requirements and derives an exact
SOC relaxation of the otherwise non-convex chance constraint on ap-
parent power flows.

2.1.5 Risk-Aware Distribution System Operation

Historically, power transmission and distributions systems have been
operated separately by transmission system operators (TSOs) and
distribution system operators (DSOs), respectively. Although both
systems are interdependent and can be coordinated, [113], the op-
erational priorities, and thus challenges when confronted with uncer-
tainty, vary. The TSO mainly aims to continuously maintain nodal
power balances while avoiding transmission overloads. The DSO, on
the other hand, is more focused on complying with nodal voltage
limits in distribution systems, on minimizing power losses and on
following the pre-defined power exchanges with the TSO. These op-
erational paradigms are under pressure handling the constantly in-
creasing volatility of power generation from rising numbers of DERs

and aging infrastructure, [114]. Reliability and safety concerns raised
with regard to DER intermittency and stochasticity, may limit techno-
economic benefits of these resources, obstructing a timely transition
towards a carbon-free generation mix. Notably, uncertainty-aware
OPF for distribution systems to schedule available resources and
means of control, requires comprehensive AC power flow analyses
to capture the impact of uncertain DER injections on voltage levels
and losses.

While the CC-ACOPF formulations in [68], [109]–[112] rely on some
assumptions specific to the operation of transmission systems, e.g.
meshed topology or bus specific control paradigms, see also Sec-
tion 3.3.2, the work in [69] proposes a distribution system-centric
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approach to the CC-ACOPF that relies on a generic linear mapping
between bus injections and voltage levels. Additionally, the chance
constraints in [69] are relaxed using a conditional value-at-risk metric,
to enable sampling-based and distributed solution methods. The typ-
ically radial topology of distribution feeders enable exact SOC (branch
flow model) and approximate linear (LinDistFlow) reformulations of
the AC power flow equations, while maintaining explicit expressions
for voltage and reactive power, see [115], [116] and Appendix B.5.
Leveraging the LinDistFlow formulation for a convex radial CC-ACOPF

formulation, [P1]–[P3] propose risk-aware operation paradigms for
distribution systems that accommodate data uncertainty, [P1], co-
optimization of DR and DER dispatch policies, [P2], and a loss factor
extension, [P3]. Additional work in [S1] leverages the convexity of
the proposed CC-ACOPF formulation to co-optimize flexible loads via
the alternating direction method of (Lagrangian) multipliers (ADMM).
A distributionally robust extension is provided in [S2].

2.2 stochastic electricity markets

The fundamental requirement for cost efficient and reliable power
system operation is the availability of necessary resources that can
provide generation and control services at an acceptable cost. Re-
structuring of the electricity sector in Europe and the U.S. in the
past decades aimed to enable supply-side competition to establish
a cost-regulating framework. Reliability and security requirements
are enforced as externalities of grid operations and engineering, [34].
However, the efficiency of unbundled grid and market operations
is threatened by increasing short-term volatility and uncertainty in-
jected by RES and DERs. As outlined in Section 2.1.1 above, reliable
system operations require the procurement of fast reserve capacity
for frequency and voltage control actions to continuously match sup-
ply and demand, while maintaining system stability. However, [1]
noted in 2008, preceding the mainstream discussion of RES intermit-
tency, that “the high value of ramp rate on the supply side has no counter-
part on the demand side, because customers care only about whether power
is on or off.” In the past, this discrepancy was attenuated by the wide-
range aggregation of loads with idiosyncratic volatility, which lead to
relatively smooth and predictable load profiles that could be handled
by conventional generators, [8], [117]. With increasing injections from
stochastic RES, however, the necessary short-term flexibility similarly
increases while, at the same time, the overall share of controllable
spinning generation in the generation mix declines, [12]. Therefore,
procuring and evaluating generation and reserve capacity from elec-
tricity markets requires engineering-informed market designs that
internalize RES uncertainty and stochasticity, while maintaining re-
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quired properties of efficient electricity markets, [P3], [P4], [9], [43],
[67], [73].

2.2.1 Pursuing Efficiency

Trading electricity as a commodity is complicated by its physical char-
acteristics, e.g. continuous balance of supply and demand, network-
bound transmission governed by Kirchhoff’s laws and high availabil-
ity requirements due to its public significance. Therefore, and build-
ing on the pre-existing experiences of vertically-integrated power
system operations, electricity trading took the form of auction-type
(pool) markets, [34], [118]. Here, generators submit their price and
capacity bids during a bidding phase and the market operator clears
these bids in a pricing phase based on complementary demand bids
or forecasts and with respect to system requirements, such as trans-
mission and security constraints, [118], [119]. Finally, prices obtained
from this market-clearing (i.e. matching supply and demand) deter-
mine the payments made by consumers (or, more precisely, commer-
cial retailers) and the remunerations paid to generators.

To ensure that this approach fulfills its intended purpose, i.e. main-
tain reliable electricity supply at socially acceptable cost, it must com-
ply with a set of axiomatic properties. A central requirement is mar-
ket efficiency. Market efficiency has several aspects that are captured
in social welfare, which is defined as the difference between the total
social value (“utility”) of consuming a certain quantity of electric en-
ergy and the total cost of supplying this quantity. A market is said
to be efficient if it maximizes welfare, [34]. If the required quantity is
independent of the cost (“inelastic”), i.e. not serving parts of the load
is virtually infinitely expensive, welfare maximization is equivalent
to cost minimization, [118].

A cost-minimizing market clearing constrained by system require-
ments and technical capabilities of generators resembles the OPF prob-
lem as discussed in Section 2.1 and Appendix B.3. However, whether
or not this market-clearing is efficient depends on the pricing pro-
cess and the resulting producer and consumer payments. Thus, the
following additional requirements must be met, [S6], [9], [34], [117],
[118]:

1. Incentive Compatibility: Producers (or, in the presence of elastic
demand, all market participants), have to be encouraged to bid
truthfully, i.e. according to their real production cost (or value
of consumption).

2. Cost Recovery: The payments made to each individual producer
must at least cover their cost of production. This is also a sub-
stantial requirement to ensure long-term resource adequacy, i.e.
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that sufficient production capacity remains in the market and
necessary investments are incentivized.

3. Revenue Adequacy: The payments collected from consumers
must be sufficient to provide cost recovering payments to pro-
ducers.

A suitable pricing mechanism that has been widely adapted in
modern electricity markets builds on competitive equilibrium theory and
has been proposed in the 1988 edition of [120]. Here, assuming per-
fect competition, i.e. no market participant is large enough to cause
price changes, efficient electricity prices are equal to the marginal cost
of supply at each bus in the network and emerge as the dual multipli-
ers of the OPF constraints. These prices are called locational marginal
prices (LMPs). Derivations and additional discussions on marginal-
cost-based pricing are provided in Appendix C.

Due to the heterogeneous planning timescales of different types
of generators, most electricity markets are cascaded with various
clearing horizons. Common periods are day-ahead, hour-ahead and
minutes-ahead (“real time”), [12]. For each planning period, co-
optimization of generation and reserve dispatch must rely on de-
mand and RES forecasts. Although these forecasts become more
refined and accurate closer to real-time, they will never be per-
fect. While dispatch and reserve decisions can be robustified against
forecast errors with the methods discussed in previous Section 2.1,
whether or not they allow an efficient market clearing requires fur-
ther discussion.

2.2.2 Challenges in Stochastic Electricity Markets

A lack of fundamental theory on efficient pricing in stochastic market
designs may be one of the reasons why real-world market operators
keep relying on deterministic solutions. As noted in [38], [121], [122],
current approaches extend the existing market designs with new com-
plex reserve products, such as CAISO’s Flex Ramp, [123], or ancillary
services. These products seek to replicate a stochastic market solution.
Robust approaches, on the other hand, guarantee a safe system op-
eration but are unsuitable for market clearing considerations because
the actual outcome will almost never be the worst case. Instead, a
large strand of literature has studied the scenario-based stochastic
programming approach as a means to design stochastic electricity
markets, [43], [72], [73], [124], [125].
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Recall the generic scenario-based stochastic OPF problem in (2.2),
which is shown below with additional dual multipliers in parenthe-
ses:

min
x,{us}

∑
s

P[ωs]f0(x,us,ωs) (2.7a)

s.t. ∀s :
(λsi ) : fi(x,us,ωs) = 0 i = 1, ...,n, (2.7b)

(δsi ) : fi(x,us,ωs) 6 0 i = n+ 1, ...,m. (2.7c)

The multi-stage nature of stochastic programming naturally resem-
bles multi-stage market clearing procedures at multiple time scales.
As discussed in Section 2.1.3, dispatch and reserve decisions derived
from stochastic programming allocate generation and reserve capac-
ity more cost-effectively, thus optimizing welfare from a market clear-
ing perspective, [126]. Pricing information can be obtained from an
aggregation of dual multipliers obtained from fixed first-stage con-
straints and probability-weighted scenario specific constraints, e.g.∑
iP[ωs]λsi ,

∑
iP[ωs]δsi . The resulting payments are cost recovering

and revenue adequate in expectation, [73], [83], [126], but not necessar-
ily in the individual scenarios. The stochastic market clearing in [43]
proposes remedial actions via corrective payments at the price of over-
all higher cost and deviating from the market equilibrium. In [125]
cost recovery and revenue adequacy is achieved, while retaining an
equilibrium by abandoning price calculations in the day-ahead phase
and settle all trades at the real-time market clearing.

Although the proposals in [43], [125] address some of the market-
theoretic caveats of scenario-based stochastic programming, some
shortcomings that obstruct a real-world implementation remain. As
discussed in Section 2.1.3, the computational tractability of stochas-
tic programming depends on scenario-construction and -reduction
techniques. In turn, these techniques will also alter the exact mar-
ket outcome. Removing the decision-making authority over these pa-
rameters from the market participants may reduce transparency and,
thus, acceptance of the market design, [9], [38], [117]. Further, purely
ex-post uplift payments or price settlements expose generators to ad-
ditional uncertainty, and thus risks, even if cost recovery is ensured.

2.2.3 The Chance-Constrained Electricity Market

Risk-aware CC-OPF offers compelling advantages as a market-clearing
mechanism and has been proposed as such in [P3]–[P5], [9], [127].
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Recall generic CC-OPF (2.6), shown below with dual multipliers in
parentheses:

min
x

E[f0(x,u(x,ω),ω)] (2.8a)

s.t.

(λi) : fi(x,u(x,ω),ω) = 0 i = 1, ...,n, ∀ω (2.8b)

(δi) : VaRεi [fi(x,u(x,ω),ω)] 6 0 i = n+ 1, ...,m. (2.8c)

Because (2.8) solves a risk-aware deterministic problem, each con-
straint yields exactly one dual multiplier. These duals, in turn, nat-
urally internalize risk adjustments of the primal problem. The first
proof that prices obtained from these duals yield a competitive equi-
librium was provided in [127]. Additionally, by explicitly enforcing
constraints on balancing control policies u(x,ω) such that the sys-
tem is balanced for all ω, it is possible to derive a marginal-cost-
based price for reserve without requiring external reserve require-
ments. A stochastic electricity market based on chance-constrained
market clearing was first proposed in [9]. Instead of per-scenario solu-
tions, the energy and reserve prices derived from the CC-OPF capture
all possible uncertainty realizations via an applied risk metric, which
guarantees cost recovery and revenue adequacy for convex markets,
[9], [128], as well as minimizes the uplift for non-convex3 markets [9].

The work in [9], [127], however, neglected any constraints related
to physical power flows, an important feature for practical implemen-
tation. The work in [P3], [P4] proposes a chance-constrained electric-
ity market with comprehensive models of the physical power flow
for wholesale (transmission) and retail (distribution) markets, respec-
tively. Here, SOC programming ensures problem convexity and, thus,
allows marginal-cost-based pricing from dual multipliers. A qual-
itative analyses of the resulting LMPs shows that energy prices are
only implicitly depending on system uncertainty and risk evaluation.
Reserve prices, on the other hand, include explicit terms related to
forecast error statistics and the decision-maker’s risk perception.

A long-term equilibrium perspective was considered in [S5]. Here,
strategic investors seek to optimally expand installed capacity of con-
trollable generation and RES to meet regulatory sustainability targets.
Although the resulting mathematical program with equilibrium con-
straints (MPEC) remains challenging to solve, the chance-constrained
approach enabled an internalization of RES stochasticity. As a result,
investment in flexible resources where evaluated higher, thus increas-
ing the RES hosting capability of the system.

All electricity market designs in [P3], [P4], [9], [43], [72], [73], [124],
[125], as well as the formulation shown in (2.8), minimize expected
cost. Thus, while internalizing the physical risk of constraint viola-
tions, they are neutral towards financial risk and neglect the possibil-

3 See Box 5 on page 173 for a brief discussion of non-convexities in electricity markets.
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ity of financial markets to hedge against such risk. While explicitly
modeling financial risk through risk-averse objective functions is com-
mon in the fields of stochastic optimization and finance, [81], it has
only recently gained attention in power system operations and elec-
tricity markets. To a large extent, this was enabled by the theoretical
work in [129], [130], which demonstrated the existence of a competi-
tive equilibrium in risk trading. Here, too, efficient prices emerge as
the dual multipliers on the market-clearing constraints of the traded
financial products. Motivated by [129], [130] multi-stage scenario-
based stochastic electricity market with risk-averse competitive equi-
librium was proposed in [131]. The work in [132] demonstrated that
different risk perceptions of market participants provide an incentive
to act strategically, thus causing suboptimal market outcomes, which
can be avoided in risk-complete electricity markets. A risk-averse
and risk-complete chance-constrained electricity marked was studied
in [P5]. Here it was shown that, similar to an optimal allocation of
generation and reserve capacity, the optimal allocation of financial
risk can decrease the ultimate system operating cost. At the same
time, the advantages of the chance-constrained market-clearing are
retained.

2.2.4 Distribution Marginal Pricing

Proliferation of DERs in low-voltage distribution systems and the sub-
sequent growth of independent, small-scale energy producers has
weakened a correlation between wholesale electricity prices and dis-
tribution electricity retail rates (tariffs), thus distorting economic sig-
nals experienced by end-users [133]. To overcome these distortions,
distribution locational marginal prices (DLMPs) have been proposed
to incentivize optimal operation and DER investments in low-voltage
distribution systems, [23], [134]–[138], and to facilitate the coordina-
tion between the transmission and distribution systems, [12], [139]–
[141].

However, the physics of low-voltage distribution systems, i.e. low-
inertia systems with increasing numbers of power-electronically inter-
faced resources and non-negligible active and reactive power losses,
amplify the stochasticity of distributed RES. Therefore, [P3] proposes
a chance-constrained market framework for distribution systems and
derives suitable risk- and uncertainty-aware DLMPs. These DLMPs cap-
ture balancing and reactive power regulation incentives to control the
risk of voltage level violations.
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2.3 contributions and impact

The work in this dissertation contributes to the academic literature on
uncertainty- and risk-aware power system operation and electricity
market designs.

2.3.1 Chance-Constrained Optimal Power Flow

Part II studies risk-aware dispatch decisions using tractable reformu-
lations of the CC-OPF problem. Chapter 3 summarizes the models of
[P1]–[P5], [7], [68] and presents tractable meshed CC-DCOPF, meshed
CC-ACOPF and radial CC-ACOPF formulations in unified notations. The
presented meshed CC-ACOPF and CC-DCOPF are adapted from [7] and
[P4], [68] respectively. The radial CC-ACOPF formulation has been in-
troduced in our work in [P1]–[P3].

Realizing the new and future role of distribution system operations
in sustainable power systems, Chapters 4 and 5 take the perspec-
tive of distribution system operators (DSOs) and address challenges
related to the stochastic behind-the-meter RES generation. For this
purpose, Chapter 4 abandons the assumption of perfect knowledge
of the statistical parameters of the underlying uncertainty from Chap-
ter 3. Instead, we use a data-driven approach to robustify the radial
CC-ACOPF against inaccuracies that occur when relying on finite his-
torical data to estimate the variance of the underlying distribution.
As a result, out-of-sample robustness is improved. In Chapter 5 data
acquisition and system operation is coupled in an online learning
process. Here, we assume that price-sensitive loads react to incen-
tive signals broadcast by the DSO. However, the exact reaction is un-
known and iterative negotiations are obstructed by lacking two-way
communication infrastructure. As a result, the DSO must learn price-
sensitivity parameters and dynamically adjust the broadcast incen-
tive signals. Chapter 5 modifies a network-agnostic online learning
approach as proposed in [31], [32] to additionally internalize opera-
tional risks using the chance-constrained framework. As a result, we
show that price signals that neglect network physics cause under- or
over-voltage issues that can be avoided with the proposed approach.

2.3.2 Risk-Aware Locational Electricity Pricing

Part III extends the network-agnostic chance-constrained electricity
market from [9] to consider DLMPs, AC-complete LMPs and risk trad-
ing. First, continuing the analyses of distribution systems from Chap-
ters 4 and 5, Chapter 6 leverages the mathematical properties of
the proposed radial CC-ACOPF to derive efficient DLMPs and reserve
prices using convex duality theory. Additionally, we propose an ex-
tension of the radial CC-ACOPF to explicitly consider network losses,
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an important feature for practical DLMP analyses given their typically
non-neglectable impact on distribution system operation. A compre-
hensive analyses of energy and reserve price components enables a
detailed evaluation of RES stochasticity and the allocation of flexible
capacity in the system, and we show that these prices can constitute
a competitive equilibrium.

In Chapter 7 we derive and analyze risk-aware energy and re-
serve prices for an AC-complete wholesale market clearing using the
CC-ACOPF formulation for meshed transmission systems from Chap-
ter 3. Additionally, as suggested in [142], we explicitly consider the
variance of system state variables in the objective of the CC-ACOPF via
a suitable variance metric. In turn, prices derived from the the re-
sulting variance-aware CC-ACOPF are augmented by additional terms
that capture a trade-off between generation flexibility and state vari-
able variance.

Finally, realizing the shortcomings of assuming strictly risk-neutral
market participants and system operators in Chapters 6 and 7 and in
[9], Chapter 8 proposes a risk-complete chance-constrained electricity
market. First, we modify the CC-DCOPF-based market clearing such
that market participants are risk-averse. We show that an equilibrium
market-clearing can be achieved if risk is evaluated via coherent risk
metrics and the market is risk-complete, i.e. participants can trade
financial products to hedge against their perceived financial risk. To
enable risk trading we introduce a generic financial security product,
a so called Arrow-Debreu Security (ADS), that is cleared alongside
the standard energy and reserve products. After proofing existence
and efficiency of the resulting market clearing for a continuous prob-
ability space of the underlying uncertainty, we show that the same
results hold for a discretized probability space. While the proposed
discretization enables practical risk contracts, the model preserves the
continuity of chance constraints.

2.3.3 Impact Statement

Besides its contributions to the academic literature, this dissertation
should provide some insights to researchers and practitioners work-
ing on the sustainable transformation of the power sector:

• Researchers can benefit from the open-source code and data
published alongside all proposed methods.

• Distribution system operators can use the proposed methods of
uncertainty-aware operation and pricing to improve their short-
and long-term planning through an improved evaluation of the
expected system state with minimal data requirements.

• Electricity market operators and policymakers may be inter-
ested in the proposed approach of internalizing RES uncertainty
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and reserve requirements by solving a risk-adjusted determin-
istic problem instead of a probabilistic problem. Further, the
proposed reserve pricing scheme can provide insights for prac-
tical data-informed reserve products.

• Power system planners can use the derived decomposition of
energy and reserve prices to relate system requirements to
uncertainty-statistics with spatial resolution.

• Financial engineers and market theorists may be interested in
the proposed connections between power system operation and
risk theory.
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This chapter derives the CC-DCOPF and CC-ACOPF formulations that
form the basis for the results and discussions in subsequent Chapters
4–8. The presented CC-DCOPF extends [7] towards correlated uncer-
tainties, similar to [102]. Derivations of the CC-ACOPF for transmis-
sion and radial distribution systems follow [P4], [68] and [P1], [P3],
respectively. Some fundamentals on modeling power flows that are
required for the derivations in this chapter are summarized in Ap-
pendix B.

3.1 preliminaries

Although the three formulations – CC-DCOPF, radial CC-ACOPF, and
meshed CC-ACOPF – require some individual notations and assump-
tions, those that are shared by all are introduced here following [P4],
[68]. Consider an electricity network with n nodes collected in set N
and l lines collected in set L. Further consider set G of generators and
set U of renewable generators (e.g. wind or commercial solar farms).
For simplicity of notation, assume that each node hosts one conven-
tional and one renewable generator, such that |G| = |U| = |N| = n.
A node with none or multiple generators can be modeled by fixing
the generator output limit to zero or by aggregating their injections,
respectively. Neither will affect the resulting CC-OPF.

Let vector pG ∈ Rn indexed as pG,i, vector pD ∈ Rn indexed
as pD,i and vector pU ∈ Rn indexed as pU,i denote the total active
power output of conventional generators, the total active power de-
mand and the active power injections from renewable generation at
every node. The corresponding reactive power injections are denoted
qG, qD, qU and the resulting vectors of net active and reactive power
injections are thus given by:

p = pG − pD + pU (3.1)

q = qG − qD + qU. (3.2)

Note, that no uncertain component has yet been introduced.
The range of admissible active and reactive power generation is
[pmin
G ,pmax

G ] and [qmin
G ,qmax

G ] respectively. Assume that there is no
curtailment of renewable generation and that all loads pD are fixed.
These assumptions can be relaxed later. We denote v ∈ Rn and
θ ∈ Rn, indexed as vi and θi, as the vectors of voltage magnitudes
and voltage angles. The range of feasible voltage magnitudes is given
as v ∈ [vmin, vmax].

31
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Each line in L is a tuple ij denoting its connected nodes i, j ∈ N.
For simplicity, assume a single line between two nodes. Vectors fp

and fq indexed as fpij and fqij denote the active and reactive power
flows from node i to node j.

At the time of solving the OPF problem, active power injection pU of
uncertain RES is a forecast value and the injection in real-time (ex post,
i.e. after the OPF decision has been made), will likely differ. The real-
time deviations from the forecast renewable active power generation
pU is the random vector ω ∈ Ω, indexed by ωi, so that the real-time
injection from uncertain renewable sources is given by

pU(ω) = pU +ω. (3.3)

Assuming a forecast that is not systematically flawed, the expected
value of ω is E[ω] = 0 and its variance-covariance matrix is given by
Var[ω] = Σ. The space of all possible outcomes of ω is Ω and, if not
otherwise mentioned, Ω ≡ Rn. Further, assume that the probability
distribution of ω can be modeled by a normal distribution. See Box 1

for some additional discussion. Note that random variables are typed
in bold font.

The cost of active power generation are modeled via a standard
quadratic cost function, [7], [9], [44], of the form:

ci(pG,i) = c2ip
2
G,i + c1ipG,i + c0i, (3.4)

where c2i, c1i, and c0i are generator specific parameters.

Box 1 – On centered normal distribution

For most of the formulations, we assume that uncertainty from RES and
load forecast errors can be modeled as a centered normal distribution,
i.e. ω ∼ N(0,Σ). The assumption of zero-mean errors is common in the
relevant literature, e.g. [7], [68], [69], [143], [144]. In most cases, as well
as in our case, this can be justified by the fact that a non-zero mean er-
ror is relatively small as compared to standard deviation values, [145],
and it can also be easily incorporated into the formulation by a sim-
ple affine transformation. For example, in our formulation a non-zero
mean forecast error, i.e. E[ω] = µ 6= 0, can be considered by adding
it to the forecast value, i.e. pU + µ. Similarly, one can corroborate the
assumption that the error is following a Gaussian distribution. It has
been shown in [144], [145] that misfits between empirical and assumed
distribution can be compensated by adjustments of the parameters of
the normal Gaussian distribution. Thus, the practical advantages of a
Gaussian distribution can be exploited without a major loss of gener-
ality towards other unimodal distributions. Also, in [145] it has been
shown based on empirical data that a Gaussian distribution is a feasi-
ble assumption for net load injection forecast errors. Skew corrections
may be accounted for by treating the risk-levels (ε) of upper and lower
constraints asymmetrically. However, such corrections must be conser-
vative to guarantee the required confidence level, [S4], [106].
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3.2 chance-constrained dcopf

The non-linear non-convex AC power flow equations often obstruct
a straightforward solution of the OPF problem, i.e. the optimization
of an objective that is constrained by state variables of the physical
power flow. In typical steady-state transmission system analyses, re-
active power flows, voltage magnitudes and losses are neglected and
the AC power flow equations are replaced by a set of linear equa-
tions that approximate active power flows and voltage angles. See
Appendix B.4 and [7], [8], [51]. Solving an OPF with this set of linear
equations is called DC Optimal Power Flow (DCOPF). To derive the
CC-DCOPF formulation, this section recalls the generic DCOPF, formu-
lates uncertain RES injections and the respective system response, and
shows how the DCOPF can be modified into a tractable CC-DCOPF. The
derivations presented in this section will also provide the basis for
the subsequent CC-ACOPF formulations.

3.2.1 Problem Formulation

Consider the deterministic DCOPF:

min c(pG) (3.5a)

s.t. B(n)θ = p (3.5b)

B(f)θ = fp (3.5c)

pmin
G,i 6 pG,i 6 p

max
G,i ∀i ∈ G (3.5d)

− fp,max
ij 6 fpij 6 f

p,max
ij ∀ij ∈ L, (3.5e)

where objective (3.5a) minimizes the total cost of electricity supply, i.e.
c(pG) =

∑
i∈G ci(pG,i). Eq. (3.5b) relates the vector of nodal (active)

power injections p, as given in (3.1), and voltage angle vector θ via
node susceptance matrix B(n) ∈ Rn×n. Similarly, Eq. (3.5c) relates
the vector of (active) power flows fp and θ via flow susceptance ma-
trix B(f) ∈ Rl×n. Constraints (3.5d) and (3.5e) enforce the predefined
limits of active power generation and active power flow. Problem (3.5)
can be solved as a linear program if nodal injections p, and thus flows
fp, are known, i.e. the problem is deterministic.

When, in real-time, renewable injection pU(ω) deviates from fore-
cast pU, as modeled in 3.3, the system needs to restore power balance.
Thus, generators will adapt their output following a predefined bal-
ancing control policy so that the real-time active power generation
is pG(ω). Hence, also the relevant state variables become uncertain
(θ(ω), fP(ω)), since they depend on forecast error ω and the chosen
balancing policy. Given the uncertainty introduced by ω and the cor-
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responding system response, the uncertainty-aware modification of
(3.5) is given as:

min E[c(pG(ω))] (3.6a)

s.t. B(n)θ(ω) = p(ω) ∀ω (3.6b)

B(f)θ(ω) = fp(ω) ∀ω (3.6c)

P[pmin
G,i 6 pG,i(ω) 6 pmax

G,i ] > 1− 2εp,i ∀i ∈ G

(3.6d)

P[−fp,max
ij 6 fp(ω)ij 6 f

p,max
ij ] > 1− 2εf,ij, ∀ij ∈ L,

(3.6e)

where objective (3.6a) now minimizes expected cost, equality con-
straints (3.6b) and (3.6c) must hold for all ω. Chance constraints (3.6d)
and (3.6e) enforce that generator outputs and flows do not exceed
their operational limits with a probability of at least (1 − εp) and
(1 − εf), respectively. Box 2 provides additional discussion on the
interpretation of chance constraints. To overcome the infinite dimen-
sionality of problem (3.6) and derive tractable expressions for (3.6d)
and (3.6e), we first define a suitable system response model.

Box 2 – On chance constraints as soft constraints.

Constraints that guarantee variables to not exceed given limits with
high probability naturally imply a low probability of the variable ex-
ceeding this limit. Yet, many constraints in power system models are re-
lated to thermal equipment limits with thermodynamic time constants
that are larger than the optimization or control horizon.

A transmission line that exceeds its thermal rating will not imme-
diately fail. Rather, it will heat up, sag and eventually trip if the
overload persists, [7]. Modeling and optimizing the exact relationship
between (stochastic) power injections, line currents and tripping like-
lihood is possible in approximation, but computationally demanding,
[146]. Instead, by enforcing a minimum constraint compliance prob-
ability, chance constraints effectively limit the ratio between overload
and non-overload time instances without explicitly having to include
thermodynamic models.

A similar argument can be made for generators. Limits on power
output levels are defined by long-term thermal and economic consid-
erations, [34]. Generation limits submitted to power system or market
operators are likely more closely related to the economics of fuel effi-
ciency and long term equipment durability. Singular short-term devia-
tions are therefore unlikely to immediately cause generator failures. If
a generator requires a strict limitation of its power output, alternative
modeling approaches such as excluding it from providing balancing
reserve (αi = 0), additional “worst case reserves”, [103] or modeling a
piecewise linear response, [103], [147], are possible.

Voltage magnitudes are not related to thermodynamic behavior, but
related to system stability and power quality. Here, a band of ±0.05p.u
is typically within normal operations. Short term voltage fluctuations
into wider bands might impact the operation of some appliances, but
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are not necessarily an immediate threat to system stability if suitable
reserves are available for corrective action, [50]. See also Section 2.1.1
above.

Finally, note that some constraints that arise in power systems are not
suitable to be modeled “softly”. For example, energy storage models
typically provide a credible state-of-charge with strict physical limita-
tions. Enforcing probabilistic constraints on energy storages, especially
over a multi-period horizon, where deviations from forecast net injec-
tions carry over to subsequent time steps via a change in SOC, will not
accurately capture its true behavior. Instead, a robust approach as in
[148] is necessary. (See also discussion in Section 9.2.)

3.2.2 System Response

To address the infinite dimensionality of (3.6) we assume an affine bal-
ancing control policy, i.e. all controllable resources react proportionally
to the total system imbalance following AGC settings or system oper-
ator commands. See Section 2.1.1 above. Thus, pG(ω) is defined in
terms of balancing participation factors α so that

pG(ω) = pG −αe>ω, (3.7)

where vector α ∈ Rn+ is indexed by αi and e is the vector of ones with
appropriate dimensions.

The resulting vector of nodal active power injections is therefore

p(ω) = pG(ω) − pD + pU(ω)

= pG −αe>ω− pD + pU +ω.
(3.8)

Lemma 3.1 (Based on [7, Lemma 2.1]). For any deviation ω ∈ Ω of
the forecast renewable injection as per (3.3) and given the affine balancing
policy (3.7), system active power is balanced if and only if (i) active power
is balanced in expectation and (ii) e>α = 1.

Proof. System balance requires:

e>p(ω) = e>(pG −αe>ω− pD + pU +ω) = 0 ∀ω ∈ Ω,
(3.9)

which immediately leads to

e>(pG − pD + pU) = (e>α− 1)e>ω ∀ω ∈ Ω. (3.10)

Condition (3.10) only holds for all ω if

(i) e>(pG − pD + pU) = E[e>p(ω)] = 0, and

(ii) e>α = 1.

Note that (i) uses E[ω] = 0.
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Now, consider a change of active power flow as a response to uncer-
tain injections pU(ω) and control law (3.7). Let matrix B(p) ∈ Rl×n

define a mapping – called power transfer distribution factor (PTDF)
matrix (see Appendix B.4) – between nodal net injections p and power
flows fp such that

fP(ω) = B(p)p(ω) = B(p)(pG −αe>ω− pD + pU +ω)

= B(p)(pG − pD + pU) +B
(p)(ω−αe>ω)

= fP +B(p)(ω−αe>ω).

(3.11)

Note that it is also possible to compute uncertain voltage angles θ(ω)

(relative to a reference bus), but (i) this offers no computational advan-
tage for the CC-DCOPF compared to the PTDF-based method presented
here and (ii) the exact knowledge of θ is of minor importance for
planning stages using the DCOPF.

3.2.3 Tractable Reformulation

We now derive a tractable formulation of chance constraints (3.6d)
and (3.6e). First, note that violating the the upper or the lower con-
straint limits are mutually exclusive events so that each of the two-
sided chance constraints (3.6d) and (3.6e) can be split into two one-
sided chance constraints. Because the modeled ω follows a normal
– and thus symmetric – distribution, and the assumed balancing con-
trol is symmetric, too, we can write:

P[pmin
G,i 6 pG,i(ω) 6 pmax

G,i ] > 1− 2εp,i

⇔

{
P[pG,i(ω) 6 pmax

G,i ] > 1− εp,i

P[pmin
G,i 6 pG,i(ω)] > 1− εp,i,

(3.12)

and

P[−fp,max
ij 6 fpij(ω) 6 fp,max

ij ] > 1− 2εf,ij

⇔

{
P[fpij(ω) 6 fp,max

ij ] > 1− εf,ij

P[−fp,max
ij 6 fpij(ω)] > 1− εf,ij.

(3.13)

Each of the one-sided chance constraints in (3.12) and (3.13) can be ad-
dressed by constraining the value-at-risk (VaR) of the uncertain state
variables, [81], [91].

Definition 3.1 ([81, Section 5]). The (1− ε)-value-at-risk VaR1−ε, or
(1− ε)-quantile, of a random variable X with cumulative distribution func-
tion (cdf) FX(z) is defined as:

VaR1−ε(X) = inf{z | FX(z) > 1− ε}. (3.14)

Lemma 3.2. Let X be a normally distributed random variable. Then:

VaR1−ε(X) = E[X] +Φ−1(1− ε)σ(X), (3.15)
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where Φ−1 denotes the inverse standard normal cdf and σ(X) the standard
deviation of random variable X.

Proof. For any normally distributed variable X with E[X] = µ and
σ(X) = σ the inverse cdf F−1X exists and is defined as:

F−1X (z) = µ+ σ erf−1(2z− 1), (3.16)

where erf−1(2z − 1) = Φ−1(z), i.e. the inverse cdf of the standard
normal distribution. Per definition, F−1X (z) returns the value that X
will not exceed with probability z. Because any normal distribution
is atomless, i.e. there are no jumps in the cdf, it holds that, [91]:

VaR1−ε(X) = F−1X (1− ε) = E[X] +Φ−1(1− ε)σ(X). (3.17)

Corollary 3.1. Let X be a random variable and c ∈ R a constant. Enforcing
a probability of X not exceeding c is equivalent to constraining VaR(X):

P[X 6 c] > 1− ε ⇔ VaR1−ε(X) 6 c.

The reformulation of (3.12) and (3.13) therefore requires expres-
sions E[pG,i(ω)], E[fpij(ω)], σ(pG,i(ω)), and σ(fpij(ω)). Expectations
E[fpij(ω)] and σ(pG,i(ω)) follow directly from from (3.7) and (3.11)
using E[ω] = 0:

E[pG,i(ω)] = pG,i (3.18)

E[fpij(ω)] = fpij. (3.19)

Standard deviations σ(pG,i(ω)) and σ(fpij(ω)) can be calculated
noting that for any random vector X with covariance matrix ΣX and
constant vectors b, c, it holds that σ(b+ c>X) =

√
Var[b+ c>X] and

Var[b+ c>X] = c>ΣXc =
∥∥∥c>Σ1/2X ∥∥∥2

2
. Here, ‖·‖2 denotes the 2-norm

and superscript ·1/2 denotes a decomposition such that for any ma-
trix A = A

1/2A
1/2. Note that covariance matrices are symmetric and

positive semidefinite per definition and, thus, such a decomposition
always exists and is unique. It follows that:

σ(pG,i(ω)) = αi
√
e>Σe (3.20)

σ(fpij(ω)) =
∥∥∥B(p)
ij (I−αe>)Σ

1/2
∥∥∥
2

, (3.21)

where B(p)
ij denotes the row vector of the row in B(p) that corresponds

to line ij and I is the identity matrix with appropriate dimensions. See
Section B.4 for the derivation of B(p).
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Expected cost E[c(pG(ω))] in the objective function can be reformu-
lated by first using the quadratic cost model from (3.4) and generator
response (3.7):

c(pG(ω)) =
∑
i∈G

ci(pG,i(ω))

=
∑
i∈G

[c2i(pG,i(ω))2 + c1ipG,i(ω) + c0i]

=
∑
i∈G

[c2i(pG,i −αie
>ω)2 + c1i(pG,i −αie

>ω) + c0i]

=
∑
i∈G

[ci(pG,i) + c2iα
2
i (e
>ω)2 − (pG,i + c1i)e

>ω].

(3.22)

Next, we apply the expectancy operator and get:

E[c(pG(ω))] = E
∑
i∈G

[ci(pG,i) + c2iα
2
i (e
>ω)2 − (pG,i + c1i)e

>ω]

=
∑
i∈G

[ci(pG,i) + c2iα
2
i E(e>ω)2 − (pG,i + c1i)E e>ω]

A
=
∑
i∈G

[ci(pG,i) + c2iα
2
i (e
>Σe)].

(3.23)

For reformulation A in (3.23) we used the fact that for any random
variable Var[X] = E[X2] −E[X]2, as well as E[ω] = 0 and Var[e>ω] =

e>Σe. Note that the reformulated expected cost in (3.23) are now (i)
deterministic, (ii) a quadratic function of the committed generation
levels pG and balancing participation factors αi, and (iii) depending
on the total forecast variance e>Σe, which we denote as S2.

Using Lemma 3.1, Lemma 3.2, Corollary 3.1 and (3.18)–(3.21)
and (3.23) we get the following tractable CC-DCOPF:

min
∑
i∈G

[ci(pG,i) + c2iα
2S2] (3.24a)

s.t. B(n)θ = pG − pD + pU (3.24b)

B(f)θ = fp (3.24c)

e>α = 1 (3.24d)

pG,i + zεpαiS 6 p
max
G,i ∀i ∈ G (3.24e)

− pG,i + zεpαiS 6 −pmin
G,i ∀i ∈ G (3.24f)

f
p
ij + zεftij 6 f

p,max
ij ∀ij ∈ L (3.24g)

− fpij + zεftij 6 f
p,max
ij ∀ij ∈ L (3.24h)∥∥∥B(p)

ij (I−αe>)Σ
1/2
ω

∥∥∥
2
6 tij ∀ij ∈ L, (3.24i)
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where we have defined zε := Φ(1 − ε) and S2 := e>Σe. Reformu-
lations (3.24e) and (3.24f) of generator chance-constraints (3.6d) are
affine. Notably term zεpαiS captures the amount of generator reserve
capacity as a function of the participation factor, the risk-level εp and
the total uncertainty S. Equation (3.24i) expresses the standard devia-
tion of flows in its SOC form and auxiliary variable tij relates this stan-
dard deviation to the deterministic reformulations (3.24g) and (3.24h)
of flow chance-constraints (3.6e). The epigraph relaxation in (3.24i) is
exact given the convexity of the SOC expression. Given an objective
function that is convex in the decision variables, the resulting problem
is conic convex and can be solved efficiently by modern off-the-shelf
solvers. See Appendix A for more details on conic optimization and
the epigraph relaxation.

3.3 chance-constrained acopf for transmission sys-
tems

We now drop the DCOPF assumptions and explicitly model reactive
power flows fq, voltage angles θ, voltage magnitudes v and losses.
This formulation is tailored towards high-voltage transmission sys-
tems and was first introduced in [68] and adapted in [P4].

3.3.1 Problem Formulation

In the presence of losses, first note that fpij 6= f
p
ji and fqij 6= f

q
ji and

the apparent power flow limit is denoted by smax
ij . We summarize the

physical relationship between p, q, fp, fq, v and θ as

F(p,q, v, θ) = 0, (3.25)

where F(p,q, v, θ) are the non-linear, non-convex AC power flow equa-
tions (B.22). See Appendix B for the detailed derivation. Note that
(3.25) also implicitly enforces the power balances. We retain the
model of uncertain active power injections pU(ω) from (3.3). The
corresponding uncertain reactive power qU(ω) is linked to the ac-
tive power generation through a constant power factor cosφi, i.e.
qU,i(ω) = qU,i + γiωi, where γi :=

√
1−cos2φi/cosφi and can either

be optimized or fixed in advance, e.g to capture the system operator’s
voltage control strategies. Vector γ ∈ Rn collects all γi, i ∈ U.

Again, any deviation ω from forecast pU will cause a specific sys-
tem response as the combination of explicit control actions to restore
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power balance and implicit physical reactions. We therefore require
a tractable reformulation of the following CC-ACOPF:

min E[c(pG(ω))] (3.26a)

s.t. F(p(ω),q(ω), v(ω), θ(ω)) = 0 ∀ω (3.26b)

P[pmin
G,i 6 pG,i(ω) 6 pmax

G,i ] > 1− 2εp ∀i ∈ G (3.26c)

P[qmin
G,i 6 qG,i(ω) 6 qmax

G,i ] > 1− 2εp ∀i ∈ G (3.26d)

P[vmin
i 6 vi(ω) 6 vmax

i ] > 1− 2εv ∀i ∈ N (3.26e)

P[(fpij(ω))2 + (fqij(ω))2 6 (smax
ij )2] > 1− 2εf ∀ij ∈ L.

(3.26f)

3.3.2 System Response

The active power response pG(ω) of each generator is, as in Sec-
tion 3.2 above, given by participation factors α that represent the rel-
ative amount of the system-wide forecast error (e>ω) each generator
has to compensate for: pG(ω) = pG − αe>ω. Again e>α = 1 is
required to balance the system for all ω.

The response of reactive power generation qG,i(ω), voltage mag-
nitudes vi(ω) and voltage angles θi(ω) is determined by the type
of node i. In transmission systems, node types PQ, PV or θV de-
termine which values can be assumed as controlled, i.e. can be
modeled as a free decision variable. See Appendix B.3. We de-
note the set of PQ and PV nodes as NPQ,NPV ⊂ N and index ref-
erence (θV) node as i = ref. At PV nodes vi(ω) = vi, ∀i ∈ NPV

is controlled and qG,i(ω), θi(ω), ∀i ∈ NPV are implicitly deter-
mined by power flow equations F(p,q, v, θ). Similarly, at PQ nodes
qG,i(ω) = qG,i, ∀i ∈ NPQ is controlled and vi(ω), θi(ω), ∀i ∈ NPQ

are implicitly determined by power flow equations F(p,q, v, θ). Fi-
nally, at the θV node vref(ω) = vref and θref(ω) = 0. Thus, active
and reactive power response at the θV node is also determined im-
plicitly by power flow equations F(p,q, v, θ). The resulting active and
reactive power flows are implicitly given by fpij(ω) = fpij(v(ω), θ(ω))

and fqij(ω) = fqij(v(ω), θ(ω)).
As the implicit system responses are governed by the AC power

flow equations in (3.25), a solution can not be obtained directly. There-
fore, we use the forecast operating point to linearize F(p,q, v, θ) = 0

using Taylor’s theorem as proposed in [68]. Let (p,q, fp, fq, v, θ) be
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the linearization result, then the nodal power injections and line flows
are:

pi = pi + J
p,v
i (v, θ)v+ Jp,θ

i (v, θ)θ (3.27)

qi = qi + J
q,v
i (v, θ)v+ Jq,θ

i (v, θ)θ (3.28)

f
p
ij = f

p
ij + J

fp,v
ij (v, θ)v+ Jfp,θ

ij (v, θ)θ (3.29)

f
q
ij = f

q
ij + J

fq,v
ij (v, θ)v+ Jfq,θ

ij (v, θ)θ, (3.30)

where Jp,v
i , Jp,θ

i , Jq,v
i , Jq,θ

i , Jf
p

ij , Jfp,θ
ij , Jf

q,v
ij , Jfq,θ

ij are components of the
Jacobian matrix J of F at point (p,q, fp, fq, v, θ), i.e. row-vectors of
sensitivity factors describing the change of active and reactive nodal
injections as functions of v and θ.

Proposition 3.1. Given the linearized power flow equations (3.27)–(3.30)
around the forecast operation point, the implicit system response to forecast
deviation ω can be expressed as an affine relationship:

qG,i(ω) = qG,i + [Rqi (I−αe
>) +Xqi diag(γ)]ω (3.31)

vi(ω) = vi + [Rvi (I−αe
>) +Xvi diag(γ)]ω (3.32)

f
p
ij(ω) = fpij + [Rf

p

ij (I−αe
>) +Xf

p

ij diag(γ)]ω (3.33)

f
q
ij(ω) = fqij + [Rf

q

ij (I−αe
>) +Xf

q

ij diag(γ)]ω, (3.34)

where row-vectors Rqi , Rvi , Rf
p

ij , Rf
q

ij map adjustments of the respective vari-
ables to active power changes, row-vectors Xqi , Xvi , Xf

p

ij , Xf
q

ij map adjust-
ments of the respective variables to reactive power changes and I is the iden-
tity matrix.

Proof. (As presented in [P4, Appendix A]) Rewrite (3.27) and (3.28) in
the following form:[

p(ω)

q(ω)

]
−

[
p

q

]
=

[
Jp,v Jp,θ

Jq,v Jq,θ

][
v(ω)

θ(ω)

]
= J

[
v(ω)

θ(ω)

]
, (3.35)

where the rows of matrices J� are equal to sensitivity vectors J�i for
i ∈ N and � = {(p, v); (p, θ); (q, v); (q, θ)}. First, we sort the rows of
the terms in (3.35) by node types and introduce superscripts PQ, PV ,
θV to indicate the node type:p

PQ(ω)

pPV(ω)

qPQ(ω)


p
θV(ω)

qPV(ω)

qθV(ω)


−

p
PQ

pPV

qPQ


p
θV

qPV

qθV


=

[
JA JB

JC JD

]
v
PQ(ω)

θPQ(ω)

θPV(ω)


v
PV(ω)

vθV(ω)

θθV(ω)


, (3.36)
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where JA−D denote the blocks of re-arranged matrix J from (3.35).
Quantities pPQ(ω),pPV(ω),qPQ(ω) are explicitly given by the un-
certain generation and the respective system responses such that:p

PQ(ω)

pPV(ω)

qPQ(ω)

−
p
PQ

pPV

qPQ

 =

p
PQ
G

pPVG

q
PQ
G

+
(ω+αe>ω)PQ

(ω+αe>ω)PV

(diag(γ)ω)PQ

 . (3.37)

Notably, pU and pD are not part of the right-hand side of (3.37) be-
cause they are fixed parameters. Further, vPV(ω) = vPV , vθV(ω) =

vPV , and θθV(ω) = θθV due to their node type. We use this relation-
ship and (3.36) and (3.37) to compute the reactions of the uncontrolled
variables to uncertainty ω:v

PQ(ω)

θPQ(ω)

θPV(ω)

−

v
PQ

θPQ

θPV

 = (JA)−1

(ω+αe>ω)PQ

(ω+αe>ω)PV

(diag(γ)ω)PQ

 . (3.38)

Note that although vPQ, θPQ, θPV implicitly depend on the AC power
flow equations, these variables are endogenous to the model and not
subject to uncertainty. Similarly, we get:p

θV(ω)

qPV(ω)

qθV(ω)

−
p
θV

qPV

qθV

−
p
θV

pPV

qθV

=JC(JA)−1
(ω+αe>ω)PQ

(ω+αe>ω)PV

(diag(γ)ω)PQ

 . (3.39)

Using (3.38), we obtain (3.32) by separating matrix (JA)−1. Similarly,
we obtain (3.31) from separating matrix JC(JA)−1 from (3.39). In anal-
ogy, (3.33) and (3.34) can be obtained by noting that pi =

∑
j:ij∈L f

p
ij

and qi =
∑
j:ij∈L f

q
ij and combining the sensitivity factors respec-

tively.

Note that sensitivity vectors Rqi ,Xqi ,Rvi ,Xvi ,Rf
p

ij ,Xf
p

ij ,Rf
q

ij ,Xf
q

ij can be
zero, if i is a PV or PQ node, and depend on the linearization point.

3.3.3 Tractable Reformulation

The linear response model of Proposition 3.1 and Lemma 3.2 allow
a tractable reformulation of chance constraints (3.26c)–(3.26e), due to
the linear dependence of pG(ω), qG(ω) and v(ω) to random vector
ω. While fpij(ω) and fqij(ω) are in itself also linearly dependent on

ω, uncertain apparent power sij(ω) :=
√

(fpij(ω))2 + (fqij(ω))2 im-
plies a quadratic dependence that disallows the use of Lemma 3.2.
While there exists no tractable direct reformulation of chance con-
straint (3.26f), it can be replaced by an inner approximation.
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Lemma 3.3 (Adapted from [149, Lemmata 5, 17]). Let the set defined by
a quadratic chance constraint be given as

Hε = {(x,a,y,b,k) : P[(x>ω+ a)2 + (y>ω+ b)2 6 c] > 1− ε},

where x,y ∈ Rn and a,b, c ∈ R are decision variables and ω follows a
multivariate Gaussian distribution. For ε < 1/2 and fixed β ∈ (0, 1) let

Gε,β =


(x,a,y,b,

c, t1, t2)

∣∣∣∣∣∣∣∣
P[|x>ω+ a| 6 t1] > 1−βε

P[|y>ω+ b| 6 t2] > 1− (1−β)ε

t21 + t
2
2 6 c

 ,

where t1, t2 ∈ R. The projection G
proj
ε,β of set Gε,β onto variables

(a,b, c,d,k) is convex and G
proj
ε,β ⊆ Hε, i.e. Gproj

ε,β is an inner approximation
of Hε.

Proof. Let txa = x>ω + a and tyb = y>ω + b then P[t2xa + t2yb 6

k] > P[(t2xa 6 t
2
1)∪ (t2yb 6 t22)] and we get

P[(t2xa 6 t
2
1)∪ (t2yb 6 t22)] >P[t2xa 6 t

2
1] + P[t2yb 6 t

2
2]

>1−βε+ 1− (1−β)ε− 1

=1− ε.

Convexity follows from the fact that P[|x>ω+ a| 6 t1] > 1− ε if and
only if P[−t1 − a 6 x>ω 6 t1 − a] > 1− ε (analogously for y,b, t2)
and that t21 + t

2
2 6 c is a convex quadratic constraint.

A chance constraint of the form P[|x>ω|+ a 6 c] is a special case
of the joint two-sided chance constraint P[cl 6 x>ω 6 cu]. Normally,
we can deal with these constraints by invoking physical arguments
as in Section 3.2 above. However, these arguments are infeasible for
the application of Lemma 3.3.

Lemma 3.4 (Adapted from [149, Lemma 16]). Let ω ∼ N(µ,Σ) be a
multivariate Gaussian random vector with mean µ and covariance matrix
Σ. Further, let 0 < ε 6 1/2 and Σ1/2(Σ1/2)> = Σ. Then chance constraint
P[cmin 6 x>ω 6 cmax] > 1− ε can be outer approximated by

cmin − µ>x 6 −zεσ(x
>ω)

cmax − µ>x 6 zεσ(x
>ω)

cmin − cmax 6 −2zε/2σ(x
>ω),

where zε := Φ(1− ε). This approximation is equivalent to ensuring

P[cmin 6 x>ω 6 cmax] > 1− 1.25ε.

Proof. See[149, Lemma 16].
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Using Lemma 3.3 we introduce auxiliary variables af
p

ij and af
p

ij , and
rewrite (3.26f) as, [P4], [68]:

P[|fpij| 6 a
fp

ij ] > 1−
εf
2

∀ij ∈ L (3.40a)

P[|fqij| 6 a
fq

ij ] > 1−
εf
2

∀ij ∈ L (3.40b)

(af
p

ij )
2 + (af

q

ij )
2 6 s2ij ∀ij ∈ L. (3.40c)

Constraint (3.40c) is a convex quadratic constraint and constraints
(3.40a) and (3.40b) are reformulated using Lemma 3.4, [P4], [68]:

ff
�
ij +Φ(1−

εf
2.5

)σ(f�ij(ω)) 6 af
�
ij ∀ij ∈ L (3.41a)

−f�ij +Φ(1−
εf
2.5

)σ(f�ij(ω)) 6 af
�
ij ∀ij ∈ L (3.41b)

Φ(1−
εf
5
)σ(f�ij(ω)) 6 af

�
ij ∀ij ∈ L, (3.41c)

for both � = p and � = q. This approximation ensures feasibility of
the constraints with desired confidence 1− εf and the conservatism
of the approximation can be tuned by adapting the divisor (i.e. 2.5
and 5), [68], [149].

The resulting tractable CC-ACOPF is, [P4]:

min
∑
i∈G

[ci(pG,i) + c2iα
2S2] (3.42a)

s.t. (3.27)–(3.30) (3.42b)∑
i∈G

αi = 1 (3.42c)

pG,i +αizεpS 6 p
max
G,i ∀i ∈ G (3.42d)

− pG,i +αizεpS 6 −pmin
G,i ∀i ∈ G (3.42e)

qG,i + zεqt
q
i 6 q

max
G,i ∀i ∈ G (3.42f)

− qG,i + zεqt
q
i 6 −qmin

G,i ∀i ∈ G (3.42g)∥∥∥(Rqi (I−αe>)+Xqi diag(γ))Σ1/2
∥∥∥
2
6 tqi ∀i ∈ G (3.42h)

vi + zεvt
v
i 6 v

max
i ∀i ∈ N (3.42i)

− vi + zεvt
v
i 6 −vmin

i ∀i ∈ N (3.42j)∥∥∥(Rvi (I−αe>)+Xvi diag(γ))Σ1/2
∥∥∥
2
6 tvi ∀i ∈ G (3.42k)

� = p,q :

(af
�
ij )
2 + (af

�
ij )
2 6 (smax

ij )2 ∀ij ∈ L (3.42l)

− af
�
ij + zεf/2.5t

fp

ij 6 f
p
ij ∀ij ∈ L (3.42m)

− af
�
ij + zεf/2.5t

f�
ij 6 −f�ij ∀ij ∈ L (3.42n)

zεf/5t
f�
ij 6 a

f�
ij ∀ij ∈ L (3.42o)∥∥∥(Rf�i (I−αe>)+Xf

�
i diag(γ))Σ1/2

∥∥∥
2
6 tf

�
i ∀ij ∈ L, (3.42p)
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where we have, as in Section 3.2 above, defined zε := Φ(1− ε) and
S2 := e>Σe. Objective (3.42a) minimizes the expected generation
cost as derived in (3.23). Eq. (3.27)–(3.30) are the active and reac-
tive power balances and flows based on the linearized AC power flow
equations. Eq. (3.42c) is the balancing reserve adequacy constraint
and (3.42d)–(3.42o) are the deterministic reformulation of chance con-
straints (3.26c)–(3.26e). Constraints (3.42d) and (3.42e) limit the active
power production pG,i and the amount of reserve αizεpS provided
by each generator. Constraints (3.42m)–(3.42o) are the deterministic
reformulation of chance constraint (3.26f) using the inner approxima-
tion as derived in (3.40) and (3.41) above.

The standard deviation of reactive power outputs, voltage levels
and flows resulting from the uncertainty and the system response is
given by the SOC constraints (3.42h), (3.42k) and (3.42p). The deriva-
tion of these expressions follows analogously to (3.21) on page 37.
Given the convexity of the SOC constraints, auxiliary variables tqi , tvi ,
tf
p

ij , tf
q

ij relate these standard deviations to the reactive output limits
(3.42f) and (3.42g), voltage bounds (3.42i) and (3.42j) and flow limits
(3.42m)–(3.42o).

3.4 chance-constrained acopf for distribution sys-
tems

This section presents an CC-ACOPF for radial distribution networks as
proposed in [P1]–[P3].

3.4.1 Problem Formulation

In the following, we consider a generic low-voltage distribution sys-
tem with controllable DERs and uncontrollable (behind-the-meter)
stochastic generation resources. Therefore, instead of modelling un-
certain injection pU(ω) separately, we fix pU = 0 and write uncertain
net demand as

pD(ω) = pD − pU(ω)

= pD − (pU +ω)

pU=0= pD −ω,

(3.43)

so that pD aggregates forecast demand and renewable generation.
For the distinction between forecast errors in active and reactive
power components of the nodal net load injections, there are two
reasonable treatment methods, [P1]:

(i) The uncertain nodal injections result from an unpredictable
combination of various appliances leading to an equally unpre-
dictable power factor at the bus. If the modeled variance in ac-
tive and reactive power demand is sufficiently small so that the



46 chance-constrained optimal power flow

realized power factor is physically consistent, the random errors
can be treated independently such that pD,i(ωi) = pD,i −ωi
and qD,i(ω) = qD,i −ω

q
i and Cov(ωi,ω

q
i ) ≈ 0, ∀i.

(ii) The uncertain nodal injections result from the unpredictable uti-
lization of large appliances with a constant power factor. In
this case, as in Section 3.3 above, the corresponding uncertain
reactive net demand qD(ω) is linked to the active net demand
through a constant power factor cosφi, i.e.

qD,i(ω) = qD,i − γiωi, (3.44)

where γi :=
√
1−cos2φi/cosφi can either be optimized or fixed in

advance.

For the sake of generality, the following formulations will be based
on option (i) and we note that option (ii) can be recovered by
defining ωqi := γiωi. We denote Σq as the covariance matrix of
ωq = [ωqi , i ∈ N] and highlight that Σq = diag(γ)Σdiag(γ) when
ωgi := γiωi.

As in Section 3.3 for a given power flow and system response model
the resulting CC-ACOPF aims to enforce

P[pmin
G,i 6 pG,i(ω

p,q) 6 pmax
G,i ] > 1− 2εp ∀i ∈ G (3.45a)

P[qmin
G,i 6 qG,i(ω

p,q) 6 qmax
G,i ] > 1− 2εq ∀i ∈ G (3.45b)

P[vmin
i 6 vi(ω

p,q) 6 vmax
i ] > 1− 2εv ∀i ∈ N (3.45c)

P[(fpij(ω
p,q))2 + (fqij(ω

p,q))2 6 (smax
ij )2] > 1− 2εf ∀ij ∈ L,

(3.45d)

whereωp,q denotes dependency on uncertain active and reactive net
demandω andωq. Clearly, the same model and reformulations that
have been presented in Section 3.3 can be applied here. However, the
radial structure of distribution networks allows a convex relaxation
and linearization of power flow equations F(p,q, v, θ) = 0. Here, we
use the linear approximation of the branch-flow model (LinDistFlow to
find a suitable system response model. See Section B.5 for derivations
of the branch flow and LinDistFlow models.

3.4.2 System Response

Consider a distribution system as a radial network given by tree
graph Γ(N,L), as in Figure 3.1. We define a root node with index
i = 0 as the substation, i.e. an infinite power source with fixed volt-
age magnitude v0. Set N+ := N \ {0} collects all non-root nodes. Each
node is associated with a set of ancestor (or parent) nodes Ai, a set
of children nodes Ci and a set of downstream nodes Di (including
i). Since Γ is radial, it is |Ai| = 1, i ∈ N+ and all lines l ∈ L are in-
dexed by N+. Each node i ∈ N is characterized by its active and
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reactive net power demand (pD,i and qD,i), i.e. the difference be-
tween the nodal load and behind-the-meter DER output, and voltage
magnitude vi ∈ [vmin

i , vmaxi ]. To use linear operators, we introduce
ui = v

2
i limited by umin

i = (vmin
i )2 and umax

i = (vmax
i )2. In addition to

controllable power output pPG,i ∈ [pmin
G,i ,p

max
G,i ], we model the control-

lable reactive power output as qPG,i ∈ [qmin
G,i ,q

max
G,i ]. Active and reactive

power flows on edge i with resistance ri, reactance xi and apparent
power limit smax

i are given by fPi and fQi . Vectors r = [ri, i ∈ N+]>

and x = [xi, i ∈ N+]> collect all resistances and reactances.
All controllable DERs are small-scale generators with given produc-

tion costs and constant generation limits. As above in (3.7), all con-
trollable generators follow the balancing policy

pG,i(ω) = pG,i −αie
>ω. (3.46)

The same policy is enforced for reactive power balancing as

qG,i(ω
q) = qG,i −αie

>ωq. (3.47)

Note that we do not distinguish between the participation in active
and reactive balancing but use a single αi for both of these actions.

Leveraging the radial network topology, the LinDistFlow for-
mulation allows the following linear recursive approximation of
F(p,q, v, θ) = 0 as per (B.35):

pG,0 −
∑
j∈C0

f
p
j = 0 (3.48a)

qG,0 −
∑
j∈C0

f
q
j = 0 (3.48b)

f
p
i + pG,i −

∑
j∈Ci

f
p
j = pD,i ∀i ∈ N+ (3.48c)

f
q
i + qG,i −

∑
j∈Ci

f
q
j = qD,i ∀i ∈ N+ (3.48d)

ui + 2(rif
p
i + xif

q
i ) = uAi ∀i ∈ N+. (3.48e)

Figure 3.1: Power flow notations in a radial network.
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Note that due to the linearization, second- and higher-order terms,
and thus power losses, are neglected. A useful correction of this
simplification has been proposed in [P3] as reported in Chapter 6.

We find a more compact matrix representation of (3.48c)–(3.48e) by
defining the following mappings:

A | Aij =


1, if edge i is part of the path

from root node 0 to node j

0, otherwise

∀i, j ∈ N+ (3.49)

R = A> diag(r)A (3.50)

X = A> diag(x)A. (3.51)

Using the uncertainty models for active and reactive net de-
mand (3.43) and (3.44), active and reactive balancing policies (3.46)
and (3.47) and mappings (3.49)–(3.51) we get the system response for
each bus i ∈ N+:

f
p
i (ω) = Aip(ω) = fpi +Ai(e−αe

>)ω (3.52)

f
q
i (ω

q) = Aiq(ω
q) = fqi +Ai(e−αe

>ωq)ω (3.53)

ui(ω
p,q) = 2(Rip(ω) +Xiq(ω

q))

= ui − 2Ri(I−αe
>)ω− 2Xi(I−αe

>)ωq

= ui − 2Ti(α)ω
p,q,

(3.54)

where p(ω) = pG(ω) − pD(ω), q(ωq) = qG(ω
q) − qD(ω

q),
Ti(α) := [Ri(I− αe

>) Xi(I− αe
>)], ωp,q := [ω ωq]>, and Ai,Ri,Xi

denote the row vectors corresponding to the i-th row of the respective
matrix.

3.4.3 Tractable Reformulation

Given linear balancing policies (3.46) and (3.47) generation chance
constraints (3.45a) and (3.45b) can be directly reformulated using
Corollary 3.1. The same reformulation applies for voltage chance con-
straints (3.45c) given the linear system response in (3.54) and using
covariance matrix:

Σp,q =

[
Σ 0

0 Σq

]
. (3.55)

Note that Σp,q can be extended to also capture cross-correlation be-
tween ω and ωq.

For the reformulation of apparent power flow constraint (3.45d) the
results from Lemmas 3.3 and 3.4 can be used. Alternatively, instead of
inner-approximating the chance constraint itself, we can also linearize
the apparent power flow constraint (fpi )

2 + (fqi )
2 6 (si)

2 through a
twelve-sided polygon:

a1,cf
P
i (ω) + a2,cf

Q
i (ωq) + a3,cs

max
i 6 0 c = 1...12, (3.56)
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where a1,c, a2,c and a3,c are coefficients1 of the set of the linearized
constraints, [150]. This approach is common in distribution system
analyses and has been used to model reactive power limits of power
electronic inverter systems in the context of distribution system oper-
ations, [150]. Recalling that ω and ωq are independent, it holds that

P[a1,cf
P
i (ω) + a2,cf

Q
i (ωq) + a3,cs

max
i 6 0] > 1− εf

⇔
a1,c(f

p
i + zεft

fp

i ) + a2,c(f
q
i + zεft

fq

i ) + a3,cs
max
i 6 0,

(3.57)

where tf
p

i and tf
q

i refer to the standard deviation of active and reac-
tive power flows and are enforced as:

tf
p

i >
∥∥∥Ai(I−αe>)Σ1/2∥∥∥

2
(3.58)

tf
q

i >
∥∥∥Ai(I−αe>)Σ1/2q ∥∥∥

2
. (3.59)

As polyhedral reformulation (3.56) is an inner approximation, the
desired confidence level 1− εf will be maintained by reformulation
(3.57). Note that enforcing constraint (3.57) for each side c of the
polyhedron slightly overestimates the violation probability when two
of the linear constraints are binding, i.e. the optimal solution of the
OPF problem lies in the corner of the polyhedron. This leads to a more
conservative solution, but maintains the desired level of security.

The complete tractable radial CC-ACOPF is now given as:

min
∑
i∈G

[ci(pG,i) + c2iα
2S2] (3.60a)

s.t. (3.58), (3.59) and (3.48a)–(3.48e)∑
i∈G

αi = 1 (3.60b)

pG,i + zεpSαi 6 p
max
G,i ∀i ∈ G (3.60c)

− pG,i + zεpSαi 6 −pmin
G,i ∀i ∈ G (3.60d)

qG,i + zεqSqαi 6 q
max
G,i ∀i ∈ G (3.60e)

− qG,i + zεqSqαi 6 −qmin
G,i ∀i ∈ G (3.60f)

ui + 2zεvt
v
i 6 u

max
i ∀i ∈ N+ (3.60g)

− ui + 2zεvt
v
i 6 −umin

i ∀i ∈ N+ (3.60h)∥∥∥Ti(α)Σ1/2p,q

∥∥∥
2
6 tvi ∀i ∈ N+ (3.60i)

a1,c(f
p
i + zεft

fp

i ) + a2,c(f
q
i + zεft

fq

i ) + a3,cs
max
i 6 0 (3.60j)

∀i ∈ N+, ∀c ∈ {1, ..., 12},

1 a1 = [1, 1, 0.2679,−0.2679,−1,−1,−1,−1,−0.2679, 0.2679, 1, 1] indexed as a1,c, c =

1...12, a2 = [0.2679, 1, 1, 1, 1, 0.2679,−0.2679,−1,−1,−1,−1,−0.2679] indexed as
a2,c, c = 1...12, a3 = [1, 1.366, 1, 1, 1.366, 1, 1, 1.366, 1, 1, 1.366, 1] indexed as a3,c, c =
1...12.
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where we used Sq =
√
e>Σqe and the reformulated expected cost

from (3.23) in objective (3.60a).

3.5 conclusion

In this chapter we derived tractable risk-aware modifications of OPF

problem for transmission and distribution systems. We first showed
how uncertainty can be incorporated into the linear DCOPF problem
using chance constraints and presented the necessary assumptions
and derivations to obtain an exact deterministic reformulation. We
then modified the results of the CC-DCOPF formulation to derive two
CC-ACOPF formulations. The first CC-ACOPF solves a risk-aware AC-
complete OPF model tailored towards meshed transmission systems.
The second CC-ACOPF relies the LinDistFlow approximation of the AC

power flow equations for radial distribution systems. The CC-OPF for-
mulations presented in this chapter will be the basis for the analyses
presented in the following chapters.



4
D ATA - D R I V E N A C T I V E D I S T R I B U T I O N S Y S T E M
O P E R AT I O N

The CC-OPF models presented in previous Chapter 3 exploit the com-
mon assumption of modeling uncertain nodal power injections us-
ing standard probability distributions with known parameters such as
mean and variance. However, this assumption does not hold in prac-
tice. Thus, this chapter shows a CC-OPF modification that inverse the
necessary statistical information from historical data and leverages
distributionally robust optimization to immunize the CC-OPF against un-
certainty in the probabilistic models of forecast errors obtained from
the available observations. This modification is applied to the radial
CC-ACOPF for distribution systems and its effectiveness is presented
in an illustrative case study.

The contents of this chapter have been published in 2018 as the ar-
ticle entitled “Data-driven distributionally robust optimal power flow
for distribution systems” in the IEEE Control Systems Letters, [P1]. For
this dissertation, the original article has been moderately adapted to
ensure unified notations and connections to other chapters.

4.1 introduction

Established operational paradigms of distribution system operations
are under pressure handling the constantly increasing volatility of
power generation due to rising numbers of DERs and aging infrastruc-
ture [114]. While the integration of DERs is a policy priority in many
jurisdictions, reliability and safety concerns may limit the techno-
economic benefits of these resources. Realizing the importance of the
new and future role of active distribution grids, this chapter takes the
perspective of DSOs and aims to facilitate further integration of DERs

by leveraging a data-driven distributionally robust decision-making
framework to overcome the impacts of uncertain power injections on
distribution systems.

Decision-making tools based in OPF are routinely used to schedule
and continuously dispatch controllable generators and loads to bal-
ance the system with minimal costs and losses with respect to the
systems technical constraints (e.g. limits on generation outputs, volt-
age magnitudes and line flows). The inability to meet these limits
may cause system instability and, eventually, lead to cascading fail-
ures [7].

To avoid violating these limits in the presence of uncertain
power injections, stochastic programming and especially chance

51
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constrained-optimization has been leveraged for uncertainty-aware
OPF models. The majority of such models have been designed for
transmission systems, e.g. [7], [68], [102], and thus are tailored to-
wards their operating needs. The studies in [7], [68], [102] present a
risk-controlled CC-OPF leveraging the direct current (DC) power flow
linearization. These CC-DCOPF models are proven to effectively trade-
off the likelihood of constraint violationsand the security cost to avoid
these violations. On the other hand, DERs are primarily located in dis-
tribution systems, where they mainly complicate voltage regulation,
[151], and therefore the DC approximation is not technically suitable
since it parametrizes voltage magnitudes at rated values.

The models in [7], [68], [102], [151], and those presented in Chap-
ter 3, exploit the common assumption of modeling uncertain nodal
power injections using standard probability distributions with known
parameters such as mean and variance. This assumption does not
hold in practice (see, e.g., a data-driven wind power study in [145]).
The underlying distribution is never observable, but must be inferred
from data. However, a stochastic program tuned towards a given
data set often performs poorly when confronted with a different data
set, even if it is drawn from the same distribution [152]. Instead of
immunizing optimal solutions against worst-case observations that
are available (data-robust methods) distributionally robust optimization
takes the worst-case over a family of distributions that are supported
by the sample data [152]–[154]. In the OPF context, distributionally
robust optimization has been extensively studied in the for transmis-
sion OPF models, e.g. [105], [155]. These studies use the DC power
flow approximation to represent power flows in a form suitable for
introducing chance constraints and assume knowledge of first and
second order distribution moments [106].

This chapter presents a data-driven distributionally robust
CC-ACOPF for distribution systems, building on the CC-ACOPF for dis-
tribution systems derived in previous Chapter 3. We robustify the
formulation by introducing an ambiguous probability distribution of
the uncertain input via a distributional uncertainty set (see e.g. [152]).
Our case study corroborates the usefulness and scalability of the pro-
posed distributionally robust CC-ACOPF.

4.2 preliminaries

We use the tractable formulation of the CC-ACOPF for radial distribu-
tion systems as presented in (3.60). For the sake of exposition we omit
the constraints on apparent power flows and remark that real-life dis-
tribution systems are typically voltage-constrained and power flow
limits can often be disregarded, e.g. future distribution operations
are expected to have “bounds on system frequency, voltage levels, and DER

capacities”, [156]. If an explicit treatment of power flow constraints is
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required, the method proposed below can be extended accordingly.
Further, we assume that the nodal forecast errors are uncorrelated,
i.e. Cov(ωi,ωj) = 0 ∀i, j ∈ N : i 6= j, a common assumption in the
relevant literature, e.g. [7], [69]. As a result we can rewrite some of
the expressions in (3.60) as follows, [P1]:

S2 = e>Σe =
∑
i∈N+

Var(ωi) (4.1)

S2q = e>Σqe =
∑
i∈N+

Var(ωqi ) (4.2)

∥∥∥(Ti(α)Σ1/2p,q

∥∥∥2
2
=
∑
j∈N+

Var(ωj)
(
Rij +

∑
k∈N+

Rikαk

)2
+
∑
j∈N+

Var(ωqj )
(
Xij +

∑
k∈N+

Xikαk

)2 (4.3)

This leads to the following modification of (3.60), which has been
proposed in [P1] and will be used for the remainder of this chapter:

min
∑
i∈G

[
ci(pG,i) + c2iα

2
i

∑
j∈N+

Var(ωj)
]

(4.4a)

s.t. (3.48a)–(3.48e)

(3.58), (3.59), (3.60b), (3.60g) and (3.60h)

pG,i + zεpαi

√∑
j∈N+

Var(ωj) 6 pmax
G,i ∀i ∈ G (4.4b)

− pG,i + zεpαi

√∑
j∈N+

Var(ωj) 6 −pmin
G,i ∀i ∈ G (4.4c)

qG,i + zεpαi

√∑
j∈N+

Var(ωqj ) 6 q
max
G,i ∀i ∈ G (4.4d)

− qG,i + zεpαi

√∑
j∈N+

Var(ωqj ) 6 −qmin
G,i ∀i ∈ G (4.4e)

( ∑
j∈N+

Var(ωj)
(
Rij +

∑
k∈N+

Rikαk
)2

+
∑
j∈N+

Var(ωqj )
(
Xij +

∑
k∈N+

Xikαk
)2)1/2

6 tvi

(4.4f)

∀i ∈ N+.

4.3 distributionally robust formulation

So far, the presented formulations solve the stochastic problem with
the assumption of perfect knowledge of the underlying distribution
of the random variable. However, this true distribution can not be
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known exactly, but is only informed by finite observations of previ-
ous realizations. The distribution that we use to define both the ex-
pected costs and the chance constraints therefore is ambiguous over
the available data. To robustify the formulation robust against un-
certain distributions, we redefine the CC-ACOPF objective as follows:

min
x

sup
P∈P

EP[c(pG(ω))], (4.5)

where the set P is the set of all distributions that are supported by
the available data within a predefined level of confidence and EP is
the expectation taken with respect to the distribution P. The task is
to minimize the worst-case expectation based on the distributional un-
certainty set that has been inferred by the data. The quality of the
available historic data does not affect our proposed model inherently.
However, the accuracy of forecasts and volatility of net loads depend
on meteorological and circumstantial externalities. Since stochastic
optimization is especially powerful for short-term (e.g. intra-day) sys-
tem dispatch, it is reasonable to assume the availability of detrended
data based on similar conditions (e.g. type of day, season, etc).

4.3.1 Box-Constrained Ambiguity Set

Let H(ωi) := {ω̂i,t}t6N, i ∈ N be the set of N observed realizations of
the forecast error at bus i for either active or reactive power forecast,
where ω̂i = p̂D,i − pD,i. We introduce the circumflex (ˆ) to mark all
values that are based on empirical data. As the forecast error is zero-
mean and normally distributed, the distribution can be defined via
the sample variance of the empirical data at each bus as:

σ̂2i =
1

N

∑
t6N

ω̂2i,t, i ∈ N. (4.6)

Note that the zero mean assumption allows the calculation of σ̂2i with
the full degree of freedom N (as opposed to N − 1 in the case of
estimated mean).

Although the sample variance is the minimum-variance unbiased es-
timator of the unknown distribution, it will never resemble the true
variance perfectly while N < ∞. It has been shown that the sam-
ple variance itself is a random variable following a Chi-Square (χ2)
distribution parameterized by the number of available samples N,
[157]. We can use this property to define for each node i an interval
Pi(H(ωi), ξ) that contains the true variance with probability 1− ξ:

Pi(H(ωi), ξ) =
[
ζ̂low
i , ζ̂up

i

]
, (4.7a)
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Figure 4.1: Exemplary true distribution, historic observations and uncer-
tainty sets for a bus with a load of 1 p.u.: (a) True (unknown)
error-distribution with a standard deviation of 20 % of the load.
(b) N = 100 samples drawn from the true error-distribution (blue
bar-histogram). (c) Uncertainty intervals around sample variance
σ̂N for different (1− ξ). (d) Set of possible distributions based
on σ̂i and the uncertainty intervals, respectively.

where

ζ̂low
i :=

Nσ̂2i
χ2
N,(1−ξ)/2

, ζ̂
up
i :=

Nσ̂2i
χ2
N,ξ/2

. (4.7b)

It is χ2N,ξ the ξ-quantile of the χ2-distribution with N degrees of
freedom. Note that the width of the interval will decrease with
the amount of available samples and that the χ2-distribution is not
symmetric; The interval will therefore not be centered around σ̂2 (cf.
Fig. 4.1 (c)). With (4.7a) and (4.7b) we define P as the set of centred
multivariate normal distributions with zero correlation and variances
given by sets Pi(H(ωi), ξ), ∀i ∈ N+:

4.3.2 Worst-Case Expectation

With the ambiguity set as defined above we can now find the solu-
tion to the inner maximization of the expected cost. Based on the
generation cost model in (3.4), the expected system cost in (4.4a) is
the sum of convex quadratic cost functions of individual generators,
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which includes the sum of the variances of the forecast errors. With
respect to (4.7) the worst-case expectation is given as:

sup
PP

EP[c(pG(ω))]

= sup
σ2i∈Pi, ∀i∈N+

∑
i∈G

[
ci(pG,i) + c2iα

2
i

∑
j∈N+

σ2j

]
=
∑
i∈G

[
ci(pG,i) + c2iα

2
i sup
σ2i∈Pi, ∀i∈N+

∑
j∈N+

σ2j

]
=
∑
i∈G

[
ci(pG,i) + c2iα

2
i

∑
j∈N+

ζ̂j,h

]
.

(4.8)

The linear relation between the sum of the individual error variances
at the nodes and the expected cost leads to the upper bound of the
uncertainty region ζ̂up

i as the worst case expectation of the objective
function (cf. [158]).

4.3.3 Distributionally Robust Formulation

We can now reformulate the CC-ACOPF problem such that the risk of
constraint violations in the presence of uncertain load is minimized
and also to account for our data-driven, incomplete knowledge of the
underlying error distribution:

min
∑
i∈G

[
ci(pG,i) + c2iα

2
i

∑
j∈N+

ζ̂j,h

]
(4.9a)

s.t. (3.48a)–(3.48e)

(3.58), (3.59), (3.60b), (3.60g) and (3.60h)

pG,i + zεpαi

√∑
j∈N+

ζ̂j,h 6 p
max
G,i ∀i ∈ G (4.9b)

− pG,i + zεpαi

√∑
j∈N+

ζ̂
up
i 6 −pmin

G,i ∀i ∈ G (4.9c)

qG,i + zεpαi

√∑
j∈N+

ζ̂
up
i 6 q

max
G,i ∀i ∈ G (4.9d)

− qG,i + zεpαi

√∑
j∈N+

ζ̂
up
i 6 −qmin

G,i ∀i ∈ G (4.9e)

( ∑
j∈N+

ζ̂
up
i

(
Rij +

∑
k∈N+

Rikαk
)2

+
∑
j∈N+

ζ̂
up
i

(
Xij +

∑
k∈N+

Xikαk
)2)1/2

6 tvi

(4.9f)

∀i ∈ N+
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Thus, problem (4.9) is a distributionally robust CC-ACOPF. We use
“dr-CC-ACOPF” as a shorthand to reference it. Note that the original
problem structure, i.e. quadratic with second-order conic constraints,
is retained and thus allows an efficient solution with off-the-shelf
solvers.

4.4 illustrative case study

We use the 15-bus radial distribution system from [139] and add two
fully controllable generators at nodes 6 and 11 with the production
cost of $10/MWh each in addition to the substation at the root node,
which supplies at $50/MWh. These costs are selected to incentivize
the use of distributed generators. We assume that the net load fore-
casts are given for each node with the zero-mean forecast error and
the standard deviation of σ(ωi) = 0.2pi,D. This relation has been
shown as a feasible assumption based on empirical data in [106] and
[145]. The latter reference also shows how to overcome data misfits
inflicted by assuming a normal distribution. as in Fig. 4.1(a).We use
this true distribution to obtain N = 100 error samples that maintain
the node’s power factor shown in the histogram of Fig. 4.1(b). In turn,
we use these samples and (4.6) – (4.7) to derive uncertainty intervals
for different ξ as shown in Fig. 4.1(c). Fig. 4.1(d) displays the re-
sulting distribution used to solve the CC-ACOPF (dashed line) and the
uncertainty sets used to solve the distributionally robust CC-ACOPF

(colored areas). The CC-ACOPF and dr-CC-ACOPF formulations are
then compared in terms of their constraint feasibility and operating
cost. To this end, we solve each model and then test their solutions
against 750 random samples generated from the true distribution in
Fig. 4.1(a), which is sufficient to obtain stable empirical distributions
in both cases. We implement the case study using the Julia JuMP pack-
age [159] and our code and input data can be downloaded from [160].

4.4.1 In-Sample Evaluation

Fig. 4.2 presents empirical probabilities of voltage constraint viola-
tions (either upper or lower limit) for different ηv. As ηv increases so
does the frequency of observed violations. If ηv > 1%, the CC-ACOPF

and dr-CC-ACOPF have lower empirical violations than the postulated
value of ηv. Note that the dr-CC-ACOPF systematically outpeforms
the CC-ACOPF. On the other hand, the deterministic ACOPF system-
atically underperforms relative to both chance-constrained formula-
tions. As ξ reduces, i.e. the uncertainty set in Fig. 4.1(c) spreads, the
dr-CC-ACOPF solution becomes more conservative and returns less vi-
olations.

Fig. 4.3 compares the expected costs for each OPF formulation nor-
malized by the expected cost of the CC-ACOPF formulation. The nat-
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Figure 4.2: Empirical probability of voltage violation in 750 sample cases for
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Figure 4.3: Relative expected cost for different ηv and ξ.

ural conservatism of the dr-CC-ACOPF solution, as follows from bet-
ter compliance with voltage limits in Fig. 4.2, results in a moderate
increase in the expected cost relative to the CC-ACOPF solution. How-
ever, the gap between these two formulations narrows as ηv increases.
Similarly, as the width of the uncertainty set in Fig. 4.1(c) increases,
so does the worst-case variance and thus the expected cost as per
(4.8). Our numerical results suggest that the expected cost is more
sensitive to changes in ηv than to the width of the uncertainty set.
The trade-off between the solution feasibility and expected cost is not
trivial and DSOs tend to opt a costly, yet more reliable solution, which
motivates our out-of-sample performance analysis below.
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4.4.2 Out-of-Sample Performance

For the following analyses, we generate 750 samples drawn from
newly parameterized distributions which are supported by the ini-
tial sample data in Fig. 4.1(b), but have a new value of σ2 shifted to-
wards the upper limit of the uncertainty set by parameter δ. Fig. 4.4
shows the three out-of-sample (OOS) cases and the resulting distribu-
tions from which the test samples have been drawn. We use these
samples to compare the CC-ACOPF and dr-CC-ACOPF for ηv = 3% and
ηv = 5% as shown in Fig. 4.5. The CC-ACOPF, which is not immu-
nized against distribution ambiguity, does not satisfy the theoretical
violation probability limit in all instances, except for the OOS distri-
bution with σ̂2 → σ2. On the other hand, the dr-CC-ACOPF holds
the theoretical violation probability limit in nearly all cases, except
for the two cases related to the smallest distributional uncertainty set.
As we can see in Fig. 4.4(a), two of the three OOS cases are outside
this set, which explains the empirical violation of the defined ηv. For
other OOS cases, dr-CC-ACOPF meets the requirements posed by the
theoretical violation probability limit.

4.4.3 Computational Effort and Scalability

The calculations for the case study have been performed on a PC
with an Intel Core i5 processor at 2.1 GHz with 4 GB in less than one
second each. In order to show the scalability of the proposed model,
Table 4.1 summarizes computational performance for larger networks
based on the IEEE distribution systems data sets. The results shown
in Table 4.1 use the same values of εv = 0.05 and ξ = 0.005 for all
networks.
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Figure 4.4: Distributions for out-of-sample testing. (a) Position of out-of-
sample variances in the uncertainty intervals. (b): Resulting
error distributions in comparison to the distribution based on
sample variance.
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Table 4.1: Computation time for larger systems.
Case Name Computing Time (s)

15-bus system, [139] < 1

IEEE 37-bus system, [161] < 1

IEEE 123-bus system, [161] 1.1

IEEE 8500-bus system, [161] 24.2

4.5 conclusion

To overcome the untenable assumption of perfect knowledge of the
underlying probability distributions, the risk-aware CC-ACOPF for ra-
dial distribution systems is extended to only rely on historical data.
By introducing a distributional uncertainty set and leveraging meth-
ods of distributionally robust optimization, the formulation is immu-
nized against uncertainty in the probabilistic models of forecast errors
obtained from the available observations. The case study reveals that
the distributionally robust formulation systemically reduces the em-
pirical probability of voltage violations at a moderate increase in the
expected costs. In the conducted out-of-sample performance evalu-
ation, the proposed CC-ACOPF systematically outperforms CC-ACOPF,
which is not able to guarantee the theoretical violation probability
limit.



5
O N L I N E L E A R N I N G F O R N E T W O R K
C O N S T R A I N E D D E M A N D R E S P O N S E

The previous chapter showed a CC-OPF modification that relied on
data-informed uncertainty models and additionally robustified the
decision making process against uncertainty in the estimated mo-
ments (variance). This chapter introduces an extension towards a
multi-period decision making process. Here, the system operator
tries to learn the statistical properties of demand-side uncertainty
in an online fashion, while co-optimizing DER dispatch decisions,
reserve allocations and DR pricing signals. Due to the regression-
based learning approach, the resulting error distribution can not be
modeled exactly and requires a distributionally-robust treatment that
goes beyond the moment uncertainty introduced in previous Chap-
ter 4. Further, this chapter discusses guarantees of the learning per-
formance via analysis of regret.

The contents of this chapter have been published in 2019 as the
article entitled “Online learning for network constrained demand re-
sponse pricing in distribution systems” in the IEEE Transactions on
Smart Grid, [P2]. For this dissertation, the original article has been
moderately adapted to ensure unified notations and connections to
other chapters.

5.1 introduction

Leveraging flexible distributed loads via DR programs allows elec-
tric power distribution utilities to mitigate the volatility of intermit-
tent RES and DERs, reducing peak loads, and avoiding electricity sur-
charges for customers, [24]. Such programs mainly target commercial
and industrial loads that are relatively homogeneous in size and tech-
nical capabilities and, thus, are fairly easy to price and interface with
energy managements systems used by utilities, [25]. On the other
hand, enrolling residential-scale DR resources is challenging due to
their heterogeneous characteristics and electricity usage patterns and
preferences, even if cutting-edge metering and communication tech-
nologies are available, [28]. For example, Consolidated Edison of
New York has recently introduced its voluntary “Smart Air Condi-
tioner” program, [27]. During peak demand hours, the app-based
system requests permission to adjust temperature setting of residen-
tial air conditioning units via a WiFi-connected module. In return, res-
idents receive a certain amount of “points”, which can be redeemed
as retail gift cards. However, this program does not differentiate the

61
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DR participants and, therefore, cannot provide customized incentives
to accurately match participant preferences and utility needs. This
chapter develops an online learning approach that estimates price
sensitivities of residential DR participants and produces price signals
that ensures a desired DR capacity.

Existing incentive-based DR programs, e.g. [162]–[164], optimize
the amount of demand reduction needed by the system and price sig-
nals in a look-ahead manner. However, these approaches do not guar-
antee that the observed response of DR participants meets the expec-
tation because there is no feedback communication channel from the
DR participants to the utility. However, explicitly surveying price sen-
sitivities or two-way a priori negotiation incurs a large communication
overhead and may expose sensitive data such as consumption habits.
Alternatively, utilities may prefer one-way (passive) approaches to
learn consumption patterns and preferences of individual DR partici-
pants indirectly, [165]. Such indirectly collected data can suffer from
various inaccuracies, thus also introducing uncertainty on the deliv-
erable DR capacity.

To realistically estimate the response of each DR participant and
reduce its uncertainty, [31], [32], [165], [166] develop online learning
methods based on continuous regression. These methods learn the
price sensitivity of each DR participants by inferring it from the his-
torical price signals and observed DR responses, and use the inferred
value to generate a more accurate price signal. The authors of [31] use
an iterative regression algorithm to learn price sensitivities of individ-
ual DR participants that can be used by profit-seeking DR aggregators
to optimize the total DR capacity offered to the utility. This algorithm
is shown to achieve logarithmically progressing regret, i.e. the devia-
tion from the perfect foresight case as a function of the learning hori-
zon. Similarly to [31], the work in [32] develops a risk-averse learning
approach for utilities operating residential DR programs, which can
provide an explicit probabilistic guarantee on the anticipated payoff
of utilities. In a more general approach, [166] develops a learning
algorithm that allows for a utility or an DR aggregator to participate
in a two-stage (day-ahead and real-time) whole-sale market. The pro-
posed learning algorithm also has logarithmic regret over the learn-
ing horizon and is used to obtain the aggregated demand function of
the DR participants to optimize the wholesale bidding strategy and
arbitrage between the day-ahead and real-time stages. The common
limitation of [31], [32], [165], [166] is that distribution network con-
straints, e.g. nodal voltage and line flow limits, are ignored, which
can reduce deliverability of DR capacity in practice.

Modeling network constraints for distribution systems requires
considering AC power flows to accurately account for both voltage
magnitudes and line flows. Since AC power flow equations are NP-
hard, [108], one can use relaxation [167] or linearization [168] tech-
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Figure 5.1: The proposed online learning approach in a distribution system
with DR participants and controllable resources.

niques for the sake of computational tractability. Additionally, the
effect of uncertain nodal injections on voltage magnitudes and line
flows must be accounted for. To avoid dealing with computation-
ally demanding scenario-based stochastic programming, we use the
chance constrained framework, as introduced in Chapter 3.

This chapter aims to bridge the gap between online learning meth-
ods for estimating the price sensitivities of DR participants and the
CC-OPF framework. The developed online learning method is a dy-
namic pricing scheme [169], [170] that optimizes price signals for DR

participants with unknown prices and and co-dispatches the DR and
system resources as shown in Fig. 5.1.

Given the price signals, the utility observes the response of DR par-
ticipants and updates its knowledge of price sensitivities. Relative to
[31], [32], [165], [166], this chapter internalizes the effects of network
constraints and distributionally robust optimization on learning. Dis-
tributional robust optimization mitigates risk imposed by incomplete
information on DR parameters and underlying uncertain disturbances.
By explicitly treating risk as part of the optimization, the model will
learn both the DR price sensitivities and the distribution of the load
disturbances. Furthermore, by relying on the empirical distribution
this work generalizes the approach of [P1] towards uncertain load
errors that are potentially non-Gaussian and correlated.

5.2 dr model for learning price sensitivities

This section describes the proposed DR model from the perspective of
the utility. We adopt the common practice, where a single DSO con-
trols the entire distribution system and possesses all measurements.
Specifically, it is assumed that the DSO can characterize every time
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interval t ∈ T with set Λt = {λτ ∈ Rm, ∀τ 6 t − 1}, where λτ is
the vector of price signals sent to the DR participants at preceding
time intervals, and with set Xt = {xτ ∈ Rm,∀τ 6 t− 1}, where xτ
is the vector of observed DR responses. For simplicity, it is assumed
that every node of the distribution system hosts one participant that
represents the aggregated behavior of all participants connected to
that node and, therefore, vectors λτ and xτ can further be itemized
for every node such that λt = {λi,t ∈ R, ∀i ∈ N+} and xt = {xi,t ∈
R,∀i ∈ N+}, respectively. Additionally, the utility possess nodal ac-
tive and reactive net demand forecasts pD,t = {pi,D,t ∈ R,∀i ∈ N}

and qD,t = {qi,D,t ∈ R, ∀i ∈ N}.
Using this information, the DSO acts as follows:

1. It aims to maximize the expected operating cost considering the
cost of electricity provision, remuneration for DR participants
and revenues from selling energy to consumers.

2. It determines the dispatch of all dispatchable DERs (i.e. power
outputs of controllable resources and the amount of reserve they
provide) and ensures that all distribution system constraints are
met.

3. It generates the DR price signal to achieve a desirable response
from the DR participants.

5.2.1 Price Sensitivity Model

At time t the DR participant at node i receives the price signal λi,t
and has to decide on the amount of demand reduction xi,t that satis-
fies the trade-off between receiving the remuneration λi,txi,t and the
lost utility of not consuming xi,t. Assume that the cost (or lost util-
ity) wi(xi,t) of providing demand response xi,t follows a quadratic
function [162] so that

wi(xi,t) =
1

2
ν1,ix

2
i,t + ν0,ixi,t, (5.1)

where ν1,i, ν0,i are participant-specific parameters. The profit maxi-
mization problem at each node is therefore given by:

max
xi,t

Πi(xi,t) := λi,txi,t −wi(xi,t). (5.2)

Under first order optimality conditions, Πi is maximized if

x∗i,t =
1

ν1,i
λi,t −

ν0,i

ν1,i
, (5.3)

which motivates the choice of the following linear DR model:

xi,t(λi,t) = 2β1,iλi,t +β0,i, (5.4)
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where β1,i =
1
2ν1,i

and β0,i = −
ν0,i
ν1,i

. Similarly to our result in (5.4),
[171] shows that linear models fit the majority of price-sensitive de-
mand models, because their dispatchable range is typically small and
can be approximated linearly, [32], [172]. One can additionally limit
the available DR amount by enforcing an upper bound to restrict the
dispatchable DR range to its linear segment, e.g. similarly to (5.23)
below.

Due to various externalities (e.g. some short-term adaptations of
comfort-level constraints, [173]), the reaction of DR participants to
price signal λi,t will be subject to random deviations (noise). As a
result, the demand reduction observed by the utility can be repre-
sented by random variable xi(λ), which relates the price signal and
uncertain DR capacity, with the following expectation and variance:

E[xi(λ)] = h(βi, λ) = 2β1,iλ+β0,i (5.5)

Var[xi(λ)] = σ2i (5.6)

where βi = {β0,i,β1,i},∀i ∈ N, are unknown parameters that the DSO

needs to learn. In terms of the physical interpretation of this model,
parameter β0,i = 0, ∀i ∈ N, ensures that there is no DR for λi,t =

0 and parameter β1,i > 0, ∀i ∈ N, so that the amount of demand
reduction is (weakly) increasing as λi,t increases. The variance of the
observed DR capacity in (5.6) is constant within a given price range,
since it depends on characteristics of the DR participant and does not
typically exhibit any noticeable sensitivity to the price signal, [171].

Given (5.5), the error of the observed demand reduction is:

ωi := xi(λ) − E[xi(λ)]. (5.7)

As E[xi(λ)] is the expected value of xi(λ), E[ωi] = 0 and Var[ωi] =
Var[xi(λ)] = σ2i by definition.

Remark 5.1. While parameter β0,i in (5.4) is set to zero due to the
physical interpretation of the price signal, i.e. λi,t = 0 when xi,t = 0,
we model β0,i 6= 0 to provide an additional degree of freedom for
the parameter estimation process. If β0,i 6= 0, it captures systematic
errors due to the imperfection of demand forecasting and learning.

5.2.2 Observable Demand Response Error

As per the model in (5.5), the total demand observed by the DSO at
time t is given as:

p̂D,i,t = pD,i,t − h(λi,t,βi) −ωi,t (5.8)

where pD,i,t is the forecast demand at node i at time t, h(λi,t,βi) is
the true DR expectation based on unknown parameter βi and price
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signal λi,t, and error ωi,t is a given realization drawn from random
vectorωi. Since the DSO can only observe the total difference between
the forecast and actual demand, ωi,t includes both the forecast error
of pD,i,t and the DR noise of h(λi,t,βi). Using this aggregated error,
we recover the observed DR capacity as:

xi,t = pD,i,t − d̂D,i,t, (5.9)

where xi,t internalizes aggregated demand variance regardless of its
cause, which can be included in the CC-OPF below. In practice, net de-
mand observations p̂D,i,t for each time step t will be obtained from
SCADA or user-end smart meter measurements. Since a typical tem-
poral resolution of these measurements (subseconds to minutes) is
smaller than the resolution of DR programs (minutes to hours), [28],
random measurement errors can be mitigated by simple filtering, e.g.
averaging, [174]. Since such a filtering procedure can be executed as
a pre-processing step for the proposed learning scheme, p̂D,i,t repre-
sents refined measurements.

Observing true disturbance ωi,t, however, is impossible without
knowing the true expectation of xi, i.e. knowledge of true parameters
βi. Therefore, the DSO only observes the residual error that can be
computed as follows:

ω̂
(t)
i,τ = xi,τ − h(λ, β̂(t)

i ) ∀τ 6 t− 1, (5.10)

where β̂(t)
i is the estimate of the price sensitivity parameters of node

i available to the DSO at time t. If the estimate was perfect, i.e. β̂(t)
i =

βi, the residual error ω̂(t)
τ,i would be equal to true disturbance ωτ,i

for all previous timesteps τ ∈ {1, . . . , t− 1}.

5.2.3 Learning Price Sensitivities

At each time step the DSO computes estimates β̂(t)
0,i and β̂

(t)
1,i of

unknown parameters β0,i, β1,i to update price sensitivity model
h(λ, β̂ti) and to evaluate the residual error in (5.10). These estimates
can be obtained from historical observations Λt and Xt using the
least-square estimator (LSE) as follows:

β̂
(t)
1,i =

∑t−1
τ=1(λi,τ − λi,t)(xi,τ − xi,t)

2
∑t−1
τ=1(λi,τ − λi,t)

2
(5.11)

β̂
(t)
0,i = xi,t − β̂1,iλi,t, (5.12)

with

λi,t =
1

t− 1

t−1∑
τ=1

λi,τ, xi,t =
1

t− 1

t−1∑
τ=1

xi,τ. (5.13)
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These estimators are derived by minimizing the sum of the squared
errors:

min
β̂

(t)
1,i ,β̂(t)

0,i

t−1∑
τ=1

(
2β̂

(t)
1,iλi,τ + β̂

(t)
0,i − xi,τ

)2
. (5.14)

The resulting first-order optimality conditions are given by:

(
β̂
(t)
1,i

)
:

t−1∑
τ=1

(
2β̂

(t)
1,iλ

2
i,τ + β̂

(t)
0,iλi,τ − λi,τxi,τ

)
= 0, (5.15)

(
β̂
(t)
0,i

)
:

t−1∑
τ=1

(
β̂
(t)
0,i + 2β̂

(t)
1,iλi,τ − xi,τ

)
= 0. (5.16)

By using
∑t−1
τ=1 xi,τ = (t− 1)xi,t and

∑t−1
τ=1 λi,τ = (t− 1)λi,t, we can

insert (5.16) into (5.15) to obtain:

β̂
(t)
1,i =

∑t−1
τ=1 λi,τxi,τ − (t− 1)λi,txi,t

2
∑t−1
τ=1 λ

2
i,τ − (t− 1)λ

2
i,t

(5.17)

β̂
(t)
0,i = xi,t − β̂

(t)
1,iλi,t. (5.18)

By recasting
∑t−1
τ=1 λi,τxi,τ − (t − 1)λi,txi,t into

∑t−1
τ=1(λi,τ −

λi,t)(xi,τ − xi,t) and
∑t−1
τ=1 λ

2
i,τ − (t − 1)λ

2
i,t into

∑t−1
τ=1(λi,τ − λi,t)

2

we obtain the expressions (5.11) and (5.12). Note that for efficient
practical implementation, instead of performing calculations (5.17)
and (5.18), estimates β̂(

it) can be updated using β̂(
it − 2) and new

data points λt−1, xt1 .
The estimation approach via LSE fundamentally matches the price

sensitivity model (5.4) and using β̂
(t)
1,i and β̂

(t)
0,i , we obtain the ex-

pected DR participation h(λ, β̂(t)
i ) as a function of λ based on the

available historical data. After estimating h(λ, β̂(t)
i ), we obtain set

of residual vectors Êt = {ω̂
(t)
1 , ω̂(t)

2 , . . . , ω̂(t)
t−1}, where each element

ω̂
(t)
τ is a vector of nodal residual errors from (5.10) for each time t,

i.e. ω̂(t)
τ = {ω̂

(t)
i,τ ,∀i ∈ N}. As the learning procedure progresses, set

Êt is updated at every time t because its elements depend on the
value of parameters β̂(t)

0,i and β̂(t)
1,i obtained at time t.

The residual errors, estimated as described above, are then used to
characterize random vector ω in an empirical manner, i.e. based on
the observations collected by the DSO. This residual-error-centric ap-
proach has multiple advantageous properties. First, since the random
error is independent from the price signal, the LSE method yields that
the expected value of the residual error observed by the DSO is zero,
i.e. E[ω̂t|Λt,Xt] = 0. Note that this property is obtained by not re-
stricting β̂0,i to zero but allowing the estimator to find the minimal
error with all possible degrees of freedom. Second, at every time
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interval t the empirical mean vector µ̂(t) and empirical covariance
matrix Σ̂(t) can be computed as:

µ̂(t) =
1

t− 1

t−1∑
τ=1

ωτ (5.19)

Σ̂(t)=
1

t− 2

t−1∑
τ=1

(ω̂τ−µ̂
(t))(ω̂τ−µ̂

(t)) ∀i, j ∈ N. (5.20)

These parameters µ̂(t) and Σ̂(t) can be leveraged toward the CC-OPF

described below. Using these characteristics of the empirical distri-
bution allows to overcome the limitation of making specific assump-
tions on the true underlying distribution (e.g. Gaussian as in [P1],
[S1], [7], [69]). Rather, learning can be performed over empirical data
sets, while fully accounting for spatio-temporal sensitivities captured
in the covariance matrix. In the context of DR participant scattered
across a given distribution system, such sensitivities are particularly
self-manifesting due to similar external conditions. The LSE above can
be adapted to deal with time-variable behavior of DR participants. For
instance, if the price sensitivity varies across a given day (e.g. morn-
ing, afternoon, night), different sets of sensitivities can be learned
for different time periods. This way, imperfections of linear response
functions (e.g. minimum and maximum cut-off DR regions) can be
mitigated. Furthermore, allowing for β̂0,i 6= 0 also contributes to im-
proving the estimation of potential nonlinearites close to the bounds
of the response domain (e.g. close to saturation), [175]. Further, the
LSE can be adapted to either discard older data points or to weight rel-
atively recent data points higher than older ones to capture systematic
sensitivity changes. In this chapter, we only consider time-invariant
price sensitivities.

5.3 distributionally robust system model

The DSO determines the optimal amount of desired DR participation
x∗i,t at each node i and time t that leads to minimal cost to meet elec-
tricity demand while maintaining physical system limits with high
probability. Its decision on optimal x∗i,t can only be based on previ-

ous estimates β̂(t)
i of the unknown parameters.

5.3.1 Radial CC-ACOPF with Demand Response

The uncertain nature of DR responses are accounted for in the optimal
DSO decision via a suitable CC-ACOPF formulation. Here, we use the
formulation from Section 3.4 but modify the expression of uncertain
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net-demand from (3.43) to include the desired demand response x∗

as:

pD,i(ω, x∗) = pD,i,t − (x∗i,t +ωi) (5.21)

qD,i(ω, x∗) = qD,i,t − γi,t(x
∗
i,t +ωi). (5.22)

Note, that in this chapter we opt for treating changes in reactive
power consumption to be connected to changes in active power con-
sumption via factor γi,t, see also (3.44) and discussion in Section 3.4.
The available amount of demand reduction is limited by the nodal
demand:

pD,i,t − x
∗
i,t > 0. (5.23)

With (5.21) and (5.22) the LinDistFlow power balance equations
(3.48c) and (3.48d) become:

(pD,i,t − x
∗
i,t − pG,i,t) +

∑
j∈Ci

f
p
j,t = f

p
Ai,t

∀t,∀i ∈ N+ (5.24)

(qD,i,t − γi,tx
∗
i,t − qG,i,t) +

∑
j∈Ci

f
q
j,t = f

q
Ai,t

∀t,∀i ∈ N+. (5.25)

For the expressions for uncertain flows and voltages we get:

f
p
i,t(ω) = fpi,tAi(e−αte

>)ω (5.26)

f
q
i,t(ω) = fqi,tAi(e−αte

>)diag(γt)ω, (5.27)

ui,t(ω) = ui,t − 2Xi(I−αte
>) − 2Ri(I−αte

>)diag(γt)

= ui,t − T
v
i (αt,γt),

(5.28)

with matrices A, R, X as defined in (3.49)–(3.51).
Further, expected system cost need to be extended to capture the

lost revenue from not selling
∑
i∈N+ xi at retail tariff κt and remuner-

ating the DR participants:

E[Ctotal] = E[c(pG(ω))] + E[C
(sale)
t ] + E[C

(DR)
t ]. (5.29)

Lost revenue E[C
(sale)
t ] can be written as

E[C
(sale)
t ] = κt

∑
i∈N

x∗i,t, (5.30)

where we used the fact that the expected DR h(λ, β̂(t)
i ) based on es-

timators β̂(t)
i is unbiased. Further, the DR remuneration E[C

(DR)
t ] de-

pends on the desired amount of demand response x∗i,t and price sig-
nal λ. Using (5.5) and the desired DR capacity x∗i,t, price signal λi,t
can be computed as follows:

λi,t =
x∗i,t − β̂

(t)
0,i

2β̂
(t)
1,i

, (5.31)



70 online learning for network constrained demand response

where we have to make the technical assumption β̂
(t)
1i 6= 0. This

assumption is not restrictive because estimations close to zero will
lead to prohibitively high price signals, which will lead to the same
result as if true parameter β1,i were actually equal to zero (i.e. a node
that is insensitive to DR incentive signals). Accordingly, the last term
in (5.29) can be recast as:

E[C
(DR)
t ] =

∑
i∈N

x∗i,t
x∗i,t − β̂

(t)
0,i

2β̂
(t)
1,i

. (5.32)

The resulting radial CC-ACOPF with demand response used in this
chapter is thus given as:

min E[Ctotal] (5.33a)

s.t. ∀t ∈ T, ∀ω :

(5.24) and (5.25)

pG,0 −
∑
j∈C0

f
p
j = 0 (5.33b)

qG,0 −
∑
j∈C0

f
q
j = 0 (5.33c)

ui,t + 2(rif
p
i,t + xif

q
i,t) = uAi ∀i ∈ N+ (5.33d)∑

i∈G
αi = 1 (5.33e)

P[pD,i,t(ω) 6 pmax
i ] > 1− εp, ∀i ∈ N+ (5.33f)

P[pD,i,t(ω) > pmin
i ] > 1− εp, ∀i ∈ N+ (5.33g)

P[pD,i,t(ω) 6 pmax
i ] > 1− εp, ∀i ∈ N+ (5.33h)

P[pD,i,t(ω) > pmin
i ] > 1− εp, ∀i ∈ N+ (5.33i)

P[ui,t(ω) 6 umax
i ] > 1− εv, ∀i ∈ N+ (5.33j)

P[ui,t(ω) > umin
i ] > 1− εv, ∀i ∈ N+ (5.33k)

(fpi,t(ω))2 + (fqi,t(ω))2 > (smax
i )2i ∈ N+ (5.33l)

Note that constraints on thermal transmission capacity are treated
deterministically for simplicity as discussed in Section 4.2.

5.3.2 Distributionally Robust Solution

As the uncertainty distribution underlying ω is unknown a pri-
ori, the chance constraints cannot be reformulated into SOC con-
straints as common for various parametric distributions, see Chap-
ter 3. Additionally, the regression-based learning approach obstructs
the derivation of an exact underlying distribution. Consistently
with distribution-free assumptions in price sensitivity learning in Sec-
tion 5.2.3, we extend the CC-ACOPF formulation to a distributionally
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robust form that eliminates the need of invoking potentially erro-
neous distribution assumptions. In contrast to the distributionally ro-
bust formulations in previous Chapter 4, the approach in this Chapter
relies on empirical moments without modeling a specific distribution
function.

Empirical mean and variance values of the residual errors given in
(5.19)-(5.20) can be associated with multiple distributions that are col-
lected in set P. In the following we show the exemplary derivation of
the distributionally robust chance-constraint for upper voltage chance
constraint (5.33j). Using set P, this constraint yields the following gen-
eral distributionally robust formulation:

inf
P∈P

P[ui,t(ωt) 6 u
max
i ] > 1− εv ∀t ∈ T, ∀i ∈ N. (5.34)

To reformulate distributionally robust constraint (5.34) in a
tractable form, we use Tvi (αt,γt) from (5.28), which captures the ef-
fect of fluctuations imposed by random vectorωt on the voltage mag-
nitude at node i, depending on the chosen αt and current γt. These
fluctuations must be contained within given voltage limits umaxi :

umax
i − sv,max

i,t > ui,t, (5.35)

where sv,max
i,t is a slack variable that represents the distance between

baseline value ui,t and its limit umaxi . Naturally, if Ti(αt,γt)ωt 6
sv,max
i,t holds for a given realization ωt of ω then the fluctuations

are within the limit. Therefore, in combination with (5.35), distribu-
tionally robust constraint (5.34) can be equivalently reformulated as:

umax
i − sv,max

i,t > ui,t (5.36a)

inf
sv,max
i,t ,P∈P

P[sv,max
i,t > Ti(αt,γt)ω] > 1−εv. (5.36b)

The optimal solution of (5.36) is the smallest value of slack variable
sv,max
i,t that ensures that the distributionally robust chance constraints

holds with confidence level 1− εv. This interpretation relates the so-
lution of (5.36) to the concept of conditional-value-at-risk (CVaR). Ac-
cordingly, the optimal value of sv,max

i,t is attained, if (5.36) is replaced
by the following set of matrix inequalities using [176, Theorem 2.1]:

∀t ∈ T, ∀i ∈ N :

Mv,max
i,t � 0 (5.37a)

sv,max
i,t +

1

εv
〈Ω̂(t),Mv,max

i,t 〉 6 0, (5.37b)

Mv,max
i,t −

[
0 1

2T
v
i (αt,γt)

>

1
2T
v
i (αt,γt) ui,t − u

max
i − sv,max

i,t

]
� 0, (5.37c)
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where sv,max
i,t and auxiliary matrix Mv,max

i,t are decision variables and
Ω̂(t) is the second-order moment matrix:

Ω̂(t) :=

[
Σ̂(t) + µ̂(t)(µ̂(t))> µ̂(t)

(µ̂(t))> 1

]
, (5.38)

where parameters µ̂(t) and Σ̂(t) are learned from the LSE as explained
in (5.19) and (5.20), respectively. Eq. (5.37a)-(5.37c) contain semidefi-
nite constraints that can be solved efficiently by off-the-shelf solvers,
e.g. MOSEK [177]. By inferring the security margin of the chance-
constraints from the empirical error distribution, the model can learn
the price sensitivity and optimize price signals that solve the trade-off
between larger security margins and higher costs.

The same procedure can be applied to obtain semidefinite reformu-
lation of other chance constraints by defining the respective system
responses in analogy to (5.34) and defining additional auxiliary vari-
ables sv,min

i,t , spG,max
i,t , s,minpG

i,t , sqG,max
i,t , and s,minqG

i,t , as well as matrices
Mv,min
i,t , MpG,max

i,t , MpG,min
i,t , MqG,max

i,t , and MqG,min
i,t . The resulting sets

of equations are shown in Section 5.7 on page 84.
Remark 5.2. The proposed approach requires a distributionally robust
optimization method to accommodate the mixture of errors in the
observable residuals and, thus, the unknown error distribution. The
proposed distributionally robust formulation is independent from the
parameter learning process and its conservatism can be tuned via risk
parameter ε.

5.4 regret analyses

The learning performance can be evaluated ex post in terms of regret,
i.e. comparing the decision that has been made based on the available
observations with the decision that would have been optimal in hind-
sight, after the outcome is known. The anticipated regret associated
with the proposed learning approach can be defined as the expected
difference between the cost attained with estimated parameters and
the cost postulated for true (unknown) parameters.

Proposition 5.1. The total regret can be computed in the form of ζ(t) =

ζ(en)(t) + ζ(bal)(t), where the expected regret due to the cost of energy pro-
curement is:

ζ(en)(t) =
∑
i∈N

(
(
1

2β̂
(t)
1,i

−
1

2β1,i
)(x∗i,t)

2−(
β̂
(t)
0,i

2β̂
(t)
1,i

−
β0,i

2β1,i
)x∗i,t

)
︸ ︷︷ ︸

:=ζ
(en)
i (t)

(5.39)

and the expected regret due to the balancing cost is:

ζ(bal)(t) =
∑
i∈N

(
α2i c2ie

>(Σ̂(t) − Σ)e
)

︸ ︷︷ ︸
:=ζ

(bal)
i (t)

.
(5.40)
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Proof. The expected cost as given by (5.29) are reformulated as:

E[Ct] =

Exp. Generation Cost︷ ︸︸ ︷∑
i∈G

(ci(p
p
G,i,t) +

Exp. Balancing Cost︷ ︸︸ ︷
ci2α

2
i e
>Σ̂(t)e)

+
∑
i∈N

1

2β̂1,i
(x∗i,t)

2 −
β̂1,i

2β̂1,i
x∗i,t + κt

∑
i∈N

x∗i,t︸ ︷︷ ︸
Exp. total Cost of DR

(5.41)

Since there is no parameter uncertainty in the cost of generation, ex-
pected regret due to the expected energy provision is computed as:

ζ(en)(t) :=
∑
i∈N

(
1

2β̂
(t)
1i

(x∗i,t)
2 − (

β̂
(t)
0,i

2β̂
(t)
1,i

− κt)x
∗
i,t

)

−
∑
i∈N

(
1

2β1i
(x∗i,t)

2 − (
β0,i

2β1,i
− κt)x

∗
i,t

)
(5.42)

=
∑
i∈N

(
(
1

2β̂
(t)
1,i

−
1

2β1,i
)(x∗i,t)

2 − (
β̂
(t)
0,i

2β̂
(t)
1,i

−
β0,i

2β1,i
)x∗i,t

)
.

Similarly, the expected regret due to the expected cost of balancing is
computed as:

ζ(bal)(t) :=
∑
i∈N

(
α2i c2i(e

>Σ̂(t)e
)
−
∑
i∈N

(
α2i c2ie

>Σe
)

=
∑
i∈N

(
α2i c2ie

>(Σ̂(t) − Σ)e
)

.
(5.43)

Thus, the total regret at every time step is computed as:

ζ(t) = ζ(en)(t) + ζ(bal)(t). (5.44)

Regret component ζ(en) in (5.39) depends on the parameter estima-
tion error, i.e. the discrepancy between β̂(t)

i and βi, and the amount
of desired demand response x∗i,t at each node. On the other hand,
regret component ζ(bal) is driven by the empirical variance of the de-
sired demand response (Σ̂(t)), see (5.20). To further analyze ζ(en) and
ζ(bal), we first consider the optimality condition for x∗i,t:

Proposition 5.2. Consider the CC-ACOPF problem and let πpi,t and πqi,t
be the Lagrangian dual multipliers of the active and reactive nodal power
balances (5.24) and (5.25) at node i and time t in (5.24) and (5.25). Then
the optimal desired DR at each node i is given as

x∗i,t = β̂
(t)
1,i (π

p
i,t + γiπ

q
i,t − κt) + β̂

(t)
0,i . (5.45)
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Proof. The first-order optimality condition of x∗i,t in (5.33) is:

π
p
i,t + γiπ

q
i,t =

1

β̂
(t)
1,i

x∗i,t −
β̂
(t)
i,t

β̂
(t)
1,i

+ κt. (5.46)

Re-arranging (5.46) immediately leads to (5.45). �

It follows from Proposition 5.2 and (5.31) that the optimal price
signal to achieve optimal x∗i,t is given as:

λ∗i,t = π
p
i,t + γiπ

q
i,t − κt. (5.47)

Since λ∗i,t > 0 by definition, any node i receives a non-zero price
signal in t only if πpi,t + γiπ

q
i,t > κt. Next, we analyze the convergence

of the parameter estimation error using the results of Proposition 5.2.

Proposition 5.3. Let λ∗i,t be the broadcast price signal at node i and time t,
and πpi,t, π

q
i,t the Lagrangian dual multipliers of the active and reactive nodal

power balances at node i and time t of the CC-ACOPF, and let Bt := β̂
(t)
i −βi

be the parameter estimation error. If the broadcast price is given by

λ∗i,t = max(πpi,t + γiπ
q
i,t − κt, 0), (5.48)

then parameter estimation error Bt converges to zero for all t, where
λi,t > 0.

Proof. Consider the parameter estimation error as:

Bt =

[
β̂
(t)
1,i −β1,i

β̂
(t)
0,i −β0,i

]
= F−1

i,t

(
t−1∑
τ=1

[
λi,τ

1

]
ω̂

(t)
τ

)
, (5.49)

where:

Fi,t =

[∑t−i
τ=1 λ

2
i,τ
∑t−i
τ=1 λi,τ∑t−i

τ=1 λi,τ (t− 1)

]
, (5.50)

is the Fisher information of node i at time t, [169], [170]. It follows
from (5.49) that the parameter estimation error converges to zero, if
the minimum eigenvalue of Fi,t increases unbounded over time, [169],
[170] Recalling [170, Lemma 2], the minimum eigenvalue of Fi,t is
bounded from below as:

Li,t =

t−i∑
τ=1

(λi,τ − λi,t)
2

= (t− 2)Var([λi,τ, τ = {1, ..., t− 1}]).

(5.51)

Eq. (5.51) shows that Li,t increases over time if the variance of the
broadcast price signals Var([λi,τ, τ = {1, ..., t− 1}]) does not converge
to zero. Under the non-restrictive assumption that the root node elec-
tricity price ωt changes over time, i.e. is different for different t, πpi,t



5.4 regret analyses 75

and π
q
i,t are similarly changing over time due to their dependency

on the cost of energy provision and the active network constraints,
[139]. It follows from the relation between λ∗i,t and π

p
i,t, π

q
i,t given

by (5.48) that λ∗i,t 6= 0 will not be uniform across different t. Thus, if
T+
i ⊆ {1, ..., t− 1} is the set of timesteps with λi,t > 0, then

Var([λ∗i,τ, τ ∈ T+
i ]) > 0. (5.52)

It follows from (5.52) and [170, Lemma 2] that parameter estimation
error Bt given in (5.49) converges to zero over time. �

The results of Propositions 5.2 and 5.3 lead to the following result
on the convergence of regret:

Proposition 5.4. Let the regret be ζ(t) = ζ(en)(t)+ζ(bal)(t), where ζ(en)(t)

and ζ(bal)(t) are given by (5.39) and (5.40). If at every time step t the price
signal is chosen as (5.48), then aggregated regret 1t

∑t−i
τ=1 ζ(t) is sublinear

over t.

Proof. First, consider:

t−1∑
τ

ζ(en)(τ) =
∑
i∈N

∑
τ∈T+

i

ζ
(en)
i (τ) +

∑
T0i

ζ
τ∈(en)
i (τ)

 . (5.53)

where T0 = {1, ..., t− 1} \ T+
i so that T+

i ∪ T
0 = {1, ..., t− 1} and T+

i ∩
T0 = ∅. As shown in Proposition 5.3, at every time step t with λ∗i,t 6=
0 the parameter estimation error at this node decreases on average.
Therefore, as follows from (5.39), the regret contribution of this node
decreases on average as well. On the other hand, any node i where
π
p
i,t + γiπ

q
i,t < κt and thus λ∗i,t = x∗i,t = 0, has a zero contribution to

ζ(en) as per (5.39) so that
∑
τ∈T0i

ζ
(en)
i (τ) = 0.

Next, we consider ζ(bal) in (5.40). Unlike for ζ(en), information on
the random error is acquired at every time step, even if desired DR

participation x∗i,t = 0, which leads to the convergence of ζ(bal). The
convergence of the individual regret components limt→∞ ζ(en)(t) =

limt→∞ ζ(bal)(t) = 0 leads to

1

t

t−i∑
τ=1

(
ζ(en)(τ) + ζ(bal)(τ)

)
= Θ(log(t)), (5.54)

where Θ(·) is the Big-O complexity notation. Hence, regret has a
sublinear trajectory over time. �

Note that if the network is unconstrained (i.e. no line or voltage
constraint is binding), then πpi,t = π

p
t ,∀i ∈ N, and πqi,t = π

q
t , ∀i ∈ N,

resulting in λ∗i,t = λ∗t , ∀i ∈ N, which leads to the similar regret guar-
antees as in [31], where no physical network constraints are modeled.
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Figure 5.2: The 15-node test system from [139], where the square root node
(substation) and the double contour nodes denotes controllable
resources. At each node, the filled ratio of the circle indicates the
share of the node in the total forecast demand.

5.5 illustrative case study

Fig. 5.2 illustrates the 15-node test system from [139], that we also
used in Chapter 4, with two controllable generators added to nodes 6

and 11. Each generator has a linear cost curve with ci,1 = $10 /MWh
and pmax

G,i = 0.8MW. The time horizon is given by 500 hourly inter-
vals, i.e. T = {1, 2, ..., 500}. At each interval, the cost of electricity
at the root node is sampled from the range between $30 /MWh and
$200 /MWh using a uniform distribution. The retail tariff is set to
κt = $25/MWh,∀t. The desired likelihood of chance constraint vio-
lations is εv = εp = 0.1. We use the active and reactive demand from
[139] as the forecasted baseline and the simulated reaction of the DR

participants is generated from the DR model set to the following pa-
rameters: β1,i = 1/150MWh$−1, ∀i ∈ N+, β0,i = 0, ∀i ∈ N+, and
σi = 0.1pD,i,t,∀i ∈ N+, with no correlation among the nodes. Those
are the parameters that the model needs to learn over time.

To evaluate the effectiveness of the proposed learning procedure,
the following four cases representing different levels of information
available to the DSO are compared:

• Fully oracle: The DSO uses the true values of βi and Ω.

• βi-oracle: The DSO uses the true values of βi, but Ω is unavail-
able and, therefore, Ω̂ needs to be learned.

• Ω-oracle: The DSO uses the true values of Ω, but βi is unavail-
able and, therefore, β̂i needs to be learned.
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• Fully oblivious: The DSO must learn both Ω̂ and β̂i.

Additionally, each of the cases above is analyzed for different sets of
network constraints in the distribution system:

• No network: The network (voltage, apparent power flow) con-
straints are ignored.

• Flow-constrained: Only the the apparent power flow constraints
are enforced.

• Voltage-constrained: Only the voltage constraints are enforced.

• Fully constrained: All network constraints are enforced.

All models in the case study are implemented using the Julia
JuMP package [159]. The code and input data can be downloaded
from [178].

5.5.1 DR Learning

optimal dr usage : Table 5.1 compares the optimal usage of DR

resources for different learning cases and sets of network constraints
in terms of the total DR amount exercised relative to the total demand
in the system, i.e. x∗i,t/

∑
i pD,i,t, ∀t ∈ T. The case with no network

limits enforced leads to a significantly lower usage of DR resources
since the DSO can take advantage of the two controllable DERs at node
6 and 11 with production costs lower than the supply from the root
node.

However, when the network limits are imposed, the dispatch of
DERs becomes more constrained and, therefore, the DSO elects to ex-
ercise more DR resources. The usage of DR resources is more affected
by voltage limits than by power flow limits due to two factors. First,
the distribution systems are typically voltage constrained rather than
power flow constrained. Second, as it can also be seen in Table 5.1,
power flow limits prevent the use of controllable DERs by roughly
a factor of two relative to the voltage limits. Notably, the fully con-
strained case does not necessarily lead to the maximum DR utilization
relative to other less constrained cases. This result defies the intuition
that a more constrained case would require more flexibility. However,
the cost of exercising DR flexibility appear suboptimal in our simula-
tions as network limits affect DR deliverability and more cost-effective
resources are available.

The effect of parameter learning on the optimal usage of DER re-
sources observed in Table 5.1 is two-fold. First, as the DSO becomes
more oblivious to characteristics of DR resources, DR utilization in-
creases relative to the oracle case, while the use of controllable DERs

remains nearly the same. Thus, due to a lack of oracular knowl-
edge about DR resources, the DSO is forced to overuse its available DR
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Table 5.1: Relative optimal DR usage (x∗i,t/
∑
i pD,i,t): (a): Maximum relative

optimal DR, (b): Median relative optimal DR, (c): Minimum relative
optimal DR, (d): Median of relative optimal DER utilization, all in
percent.

Oracle β-oracle Ω-oracle Oblivious

No
Network

(A) 11.40 11.40 11.40 11.40

(B) 11.40 11.40 11.40 11.40

(C) 9.312 9.312 9.318 9.439

(D) 100.0 100.0 100.0 100.0

Only
Flows

(A) 67.28 67.28 69.76 69.76

(B) 40.32 40.31 40.31 40.32

(C) 5.091 5.187 5.202 5.069

(D) 34.16 34.16 34.17 34.15

Only
Voltage

(A) 42.06 42.78 42.09 42.74

(B) 42.02 41.91 41.85 41.19

(C) 0.0 0.0 0.0 0.0
(D) 65.4 64.86 65.4 64.86

Fully
Constrained

(A) 52.8 67.37 52.86 60.50

(B) 40.2 40.25 40.24 40.24

(C) 5.04 5.042 0.0 0.0
(D) 34.04 34.07 34.05 34.05

resources to meet the system-wide demand and avoid violating net-
work limits. Second, as network operations become more restrictive,
the difference in the amounts of DR resources used in the fully oracle
and fully oblivious cases increases.

The aggregated DR usage in the fully oblivious case in Table 5.1 are
itemized for each node and each time interval in Fig. 5.3. While the
median aggregated utilization of DR resources reported in Table 5.1
is roughly the same for all network-constrained cases, the nodal dis-
tribution shown in Fig. 5.3 is differently affected by limits imposed.
This empirical evidence suggests that tighter network limits forces
the DSO to use the DR resources more uniformly across the system.

parameter learning : Consistently with the cases presented in
Fig. 5.3, this section discusses the effect of learning on the DSO objec-
tive and presents the outcomes of price learning. Fig. 5.4 compares
the DSO objective in the three non-fully-oracular cases, in which some
information about DR resources is oblivious, and the fully oracular
case under randomly sampled prices at the root node. As the learning
progresses, the accuracy of parameters available to the DSO increases,
which reduces the difference between the objective in the oracular
and non-oracular cases. This improvement in accuracy is insensitive
to the substation price, which indicates the robustness of the pro-
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Figure 5.3: Optimal DR usage at nodes relative to the nodal forecast demand,
i.e. x∗i,t/pD,i,t .
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Figure 5.4: (a) Randomly sampled energy price at the root node (substation).
(b)-(d) Difference in the DSO objective function between the orac-
ular and non-oracular cases.
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Figure 5.5: Difference between price signals (λ) obtained in the oracle case
and the oblivious case with fully constrained network.

posed learning approach. Among the three cases with non-oracular
information, there is no significant difference in convergence.

Similarly to the DSO objective, price signals produced by the pro-
posed learning approach in all non-oracular cases with all network
limits enforced converge to the oracular values, as shown in Fig. 5.5.
Notably that price signals for all nodes but nodes 1 and 12 converge
fairly quickly. The price spikes observed at these two nodes are ex-
plained by two factors. First, these nodes carry 75% of the total load,
see Fig. 5.2, which exacerbates the absolute price difference in Fig. 5.5
even for small parameter estimation errors. Second, these two nodes
are adjacent to the root node of the distribution system, which ampli-
fies spikes in the price at the root node, see randomly generated sam-
ples in Fig. 5.4(a). However, the frequency of price spikes at nodes 1

and 12 gradually reduces as the learning procedure progresses.

5.5.2 Empirical Analysis of Learning Errors

In the non-oracular cases, the learning errors steams from the un-
certainty ε and misestimation of β̂ and Ω̂. To isolate the effect of
misestimated parameters β̂ and Ω̂ from ε, we compute the differ-
ence between the expected DSO objective and the observed DSO ob-
jective in each case, i.e. ∆�t = C�t − E[C�t ], where � denotes the orac-
ular, β-oracular, Ω-oracular and oblivious cases, respectively. Since
in the oracular case the error inflicted by parameter learning is null
by definition, we obtain ∆[oracle]

t = ∆
[ω]
t , which is the error inflicted

by the uncontrollable disturbance ε in Eq. (5.8). This error is the
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Figure 5.6: Empirical analysis of learning errors for the expected and ob-
served DSO objectives.

same in the oracular and non-oracular cases and, therefore, the
learning error in the three non-oracular cases can be recovered as
∆

[β-learning]
t = ∆

[Ω-oracle]
t − ∆[ω]

t , ∆[Ω-learning]
t = ∆

[β-oracle]
t − ∆

([ω])
t and

∆
[learning]
t = ∆[oblivious]

t −∆[ω]
t , respectively.

Fig. 5.6 itemizes the learning errors computed as explained above
for the cases considered in Fig. 5.4. In all cases, the systematic errors
∆

[β-learning]
t , ∆[Ω-learning]

t and ∆[learning]
t converge to zero as the learning

progresses. This result demonstrates that the misestimation errors
induced by the learning approach can be overcome if sufficient data
sets are available.

5.5.3 Experimental Regret Analysis

Analysis of regret, i.e. the difference between the decision of the
oblivious model and the oracle (perfect foresight) model, allows as-
sessment of the performance of the learning process. We define two
regret metrics similar to [31]. First, the expected regret defines the
difference between the objective values of the oblivious and oracle
models:

ζ[exp](t) :=

t∑
τ=1

(
E[Cτ]

[oblivious] − E[Cτ]
[oracle]

)2
. (5.55)

Second, we compute the observed regret as the difference between the
objective functions of the oblivious and oracle cases after observing
the true outcome at each time step:

ζ[obs](t) :=

t∑
τ=1

(
C
[oblivious]
τ −C

[oracle]
τ

)2
. (5.56)
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Figure 5.7: Analyses of the expected and observed regret shown within a
logarithmic envelope.
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Figure 5.8: Development of empirical mean and variance at node 10.

Using (5.55) and (5.56), we seek a sublinear and asymptotically zero
regret, i.e. limt→∞ ζ(t)/t = 0, [32], [169]. Fig. 5.7 illustrates the evo-
lution of the expected and observed regret metrics. Although the
absolute regret value increases as the learning progresses, both regret
metrics exhibit a logarithmic trend with the required rate of satura-
tion of 1/t, as shown by the logarithmic envelope in Fig. 5.7. Note
that the scale of the envelope (20 log(t), 200 log(t)) has been chosen
to fit the scale of the shown regret. This shows that the regret incre-
ment at each time step is on average smaller than at the previous time
step, which indicates learning progress at each step. The same trend
is observed for the evolution of the moments of the residual error,
where the difference between the mean and variance in the oblivi-
ous and oracle cases reduces as the learning time increases. Fig. 5.8
illustrates this evolution for node 10, which was selected since our ex-
periments show that the optimal DR participation at this node has the
least sensitivity to the price volatility at the substation. Despite this
low sensitivity, we observe that the parameter estimates at node 10

converge. We observe similar convergence trends at the other nodes
of the system.
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Table 5.2: Computing times in seconds.

15-node system 141-node system

Average computing
time per time step

0.019 2.427

Standard deviation
of the computing
time per time step

0.006 0.262

5.5.4 Scalability and Computational Performance

To evaluate scalability to larger distribution systems, we use the 141-
node test system from [179] and additionally populate it with control-
lable generators at nodes 30, 40, 50, 60, 70, 80, 101 and 121 with the
production cost in the range $10− $17 per MWh. In the following,
we use the fully constrained DRCC-OPF since it is the most compu-
tationally demanding case. All simulations were carried out on a PC
with an Intel Core i7 processor with 2.50 GHz and 8 GB of memory.
Table 5.2 compares the computing times for 15- and 141-node test
systems. In our case study we did not observe any computational
abnormalities.

Fig. 5.9 shows the difference between the objective functions in the
oracle and oblivious cases. As the number of time steps increases,
so does the difference between the objective functions. As compared
to the results in Fig. 5.4(b) for the 15-node system, the convergence
of the proposed learning scheme is similar in relative terms, but the
residual differences are greater for the same time intervals due to
a higher value of the objective function. The median DR utilization
factor is 58.26 % of the available DR capacity in the system. We also
observe that some fairly cheap DR flexibility and controllable gen-
erators are blocked by the voltage and flow limits. The regret per-
formance is similar to the 15-node test system showing a logarith-
mic progression. For instance, the average observed regret per time
step is ζ[obs] = 22.14 $2 in the first 10 time steps and it reduces to
ζ[obs] = 1.03 $2 for subsequent time steps (11 to 500).

5.6 conclusion

This chapter described a learning approach that is capable of learn-
ing price sensitivities of residential DR resources and improves the
utilization of these resources in the distribution system. The ap-
proach connects the least-square estimator and distributionally ro-
bust chance-constrained optimal power flow model that co-optimizes
DR resources on a par with other dispatchable resources, while re-
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Figure 5.9: Difference in the DSO objective function between the oblivious
and oracular cases for the 141-node test system.

specting operating limits on the distribution system. As the learning
approach progresses, it reduces the systematic error inflicted by in-
sufficient knowledge about price sensitivities of DR participants from
the DSO perspective. The case study describes the usefulness of the
proposed learning approach for different network instances.

5.7 remaining reformulated chance constraints

This section shows the remaining distributionally robust reformu-
lations of the chance-constraints, which have been omitted in Sec-
tion 5.3.2 to improve readability.

• For the lower voltage constraint:

∀t ∈ T, ∀i ∈ N :

Mv,min
i,t � 0 (5.57a)

sv,min
i,t +

1

εv
〈Ω̂(t),Mv,min

i,t 〉 6 0, (5.57b)

Mv,min
i,t −

[
0 1

2T
v
i (αt,γt)

>

1
2T
v
i (αt,γt) −ui,t + u

min
i − sv,min

i,t

]
� 0.

(5.57c)

• For the upper and lower active generation constraints:

∀t ∈ T, ∀i ∈ N :

M
pG,max
i,t � 0 (5.58a)

s
pG,max
i,t +

1

εv
〈Ω̂(t),MpG,max

i,t 〉 6 0, (5.58b)

M
pG,max
i,t −

[
0 1

2T
pG
i (αt,γt)>

1
2T
pG
i (αt,γt) pG,i,t − p

max
G,i − s

pG,max
i,t

]
� 0,

(5.58c)
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and

∀t ∈ T, ∀i ∈ N :

M
pG,min
i,t � 0 (5.59a)

s
pG,min
i,t +

1

εv
〈Ω̂(t),MpG,min

i,t 〉 6 0, (5.59b)

M
pG,min
i,t −

[
0 1

2T
pG
i (αt,γt)>

1
2T
pG
i (αt,γt) −pG,i,t + p

min
G,i − s

pG,min
i,t

]
� 0,

(5.59c)

using TpGi (αt,γt) := αie>.

• For the upper and lower reactive generation constraints:

∀t ∈ T, ∀i ∈ N :

M
qG,max
i,t � 0 (5.60a)

s
qG,max
i,t +

1

εv
〈Ω̂(t),MqG,max

i,t 〉 6 0, (5.60b)

M
qG,max
i,t −

[
0 1

2T
qG
i (αt,γt)>

1
2T
qG
i (αt,γt) qG,i,t − q

max
G,i − s

qG,max
i,t

]
� 0,

(5.60c)

and

∀t ∈ T, ∀i ∈ N :

M
qG,min
i,t � 0 (5.61a)

s
qG,min
i,t +

1

εv
〈Ω̂(t),MqG,min

i,t 〉 6 0, (5.61b)

M
qG,min
i,t −

[
0 1

2T
qG
i (αt,γt)>

1
2T
qG
i (αt,γt) −qG,i,t + q

min
G,i − s

qG,min
i,t

]
� 0,

(5.61c)

using TqGi (αt,γt) := αie> diag(γ).
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R I S K - AWA R E C O O R D I N AT I O N I N A C T I V E
D I S T R I B U T I O N S Y S T E M S

The chapters in previous Part II explored the CC-OPF framework to in-
ternalize uncertainty into dispatch and balancing control decisions
and introduced data-driven and distributionally robust extensions.
This chapter leverages the convex properties of the CC-OPF to study
risk-aware equilibrium prices that can be derived from duality the-
ory. These prices can be used to coordinate DERs by incentivizing
system-beneficial dispatch decisions and reserve provisions. Further,
this chapter extends the previously lossless formulation of the radial
CC-ACOPF to include a loss approximation and studies their effect on
prices and their components.

The contents of this chapter have been published in 2019 as the
article entitled “Distribution electricity pricing under uncertainty” in
the IEEE Transactions on Power Systems, [P3]. For this dissertation,
the original article has been moderately adapted to ensure unified
notations and connections to other chapters.

6.1 introduction

Nodal electricity pricing has been shown to support the efficient
scheduling and dispatch of energy resources at the transmission
(wholesale) level [120]. However, the proliferation of DERs in low-
voltage distribution systems and the subsequent growth of indepen-
dent, small-scale energy producers has weakened a correlation be-
tween wholesale electricity prices and distribution electricity rates
(tariffs), thus distorting economic signals experienced by end-users,
[133]. To overcome these distortions, DLMPs have been proposed to
incentivize optimal operation and DER investments in low-voltage dis-
tribution systems, [23], [134]–[138], and to facilitate the coordination
between the transmission and distribution systems, [12], [139]–[141].
However, implementing DLMPs in practice is obstructed by the in-
ability to accurately capture stochasticity of renewable generation re-
sources (e.g. solar or wind) in the price formation process, [7], [9],
[43], [69], [72], [73], [124]. As a result, prospective distribution mar-
ket designs lack completeness, i.e. do not offer customized financial
instruments to deal with each source of uncertainty, which may result
in market inefficiencies and welfare losses, [130], [131]. Motivated by
the need to complete distribution market designs with uncertainty
and risk information on renewable generation resources, this chapter
proposes a new approach to obtain DLMPs that explicitly incorporate

89
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the stochasticity of renewable generation resources and analyzes the
effect of risk and uncertainty parameters on the price formation pro-
cess.

Previously, DLMPs have been considered for numerous applications.
Similarly to wholesale markets, [23], [137] propose a distribution
day-ahead market to alleviate congestion caused by electric vehicle
charging using a welfare-maximizing DCOPF model for DLMP com-
putations. Alternatively, the model in [134] introduces power losses
in DLMP computations to properly reward DERs for reducing system-
wide power losses. In [135], the authors compute energy, congestion,
and power loss DLMP components in the presence of advanced smart
grid devices, e.g. solid state transformers and variable impedance
lines. Furthermore, DLMPs have been shown to support the system
operation, e.g. by incentivizing voltage support from DERs, [136], or
by mitigating voltage imbalance in a three-phase system, [138]. Pa-
pavasiliou [139] comprehensively analyzes DLMPs and their properties
using the branch AC power flow model and its convex second-order
conic (SOC) relaxation. The branch power flow model facilitates the
use of spot electricity pricing to analyze the effect of the substation
prices, power losses, voltage constraints and thermal line limits on
DLMP computations, but yields significant computational complex-
ity even for small networks. On the other hand, its SOC relaxation
makes it possible to represent DLMPs in terms of local information,
i.e. parameters of a given distribution node and its neighbors. How-
ever, all DLMP computations in [23], [134]–[139] disregard stochastic-
ity of renewable DER technologies and, therefore, the resulting prices
do not provide proper incentives to efficiently cope with balancing
regulation needs. The need to consider stochasticity of renewable
generation resources in the price formation process is recognized for
transmission (wholesale) electricity pricing, e.g. [43], [72], [73], [124],
[127], [180], but there is no framework for stochasticity-aware pricing
in emerging distribution markets.

Chance-constrained programming can be leveraged to deal with
stochasticity of DERs in the distribution system and to robustify op-
erating decisions of the DSO, [P1], [P2], [S1], [69], [173], [181]. The
models in [P1], [P2], [S1], [69], [181] improve compliance with distri-
bution system limits at a moderate, if any, increase in operating costs.
However, with the exception of the work in [P4], [9], [127], their ap-
plication for electricity pricing has not been considered. This chapter
fills this gap and derives DLMPs that internalize stochasticity using
the chance-constrained framework.

This framework offers some significant advantages over other
uncertainty-aware methods such as robust or scenario-based stochas-
tic optimization. First, chance constraints internalize continuous
probability distributions of uncertain parameters, which are readily
available from historical data (e.g. weather data can be obtained from
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national weather services, [145], and load data can be retrieved from
archived forecasts, [P2]). Further, they can accommodate a broad
variety of parametric distributions, [106], [145], and attain distribu-
tional robustness, [P1], [9]. Hence, unlike scenario-based stochastic
and robust optimization methods, chance constraints do not require
discretizing a probability space for scenario sampling or for deriv-
ing a finite uncertainty set. In the electricity pricing and market de-
sign context, avoiding such somewhat arbitrary and non-transparent
input data manipulations can improve acceptance of stochastic mar-
kets among market participants, [43]. Second, chance-constrained
programs can be solved efficiently at scale, [143], and generally yield
less conservative results, [7]. The residual conservatism can be tuned
via a confidence interval, which can be related to established system
reliability metrics, e.g. loss of load probability (LOLP) or expected en-
ergy not served (EENS), [182]. Third, the CC-OPF automatically fulfills
all internalized market design considerations, e.g. revenue adequacy,
cost recovery and incentive compatibility, for all potential outcomes
and does not require scenario-specific adjustments, [9], which cause
social welfare losses if scenario-based stochastic optimization meth-
ods are used, [43]. Additional discussion on chance constraints and
chance-constrained markets can be found in Chapter 2.

To take advantage of chance constraints, we build on the CC-ACOPF

model for a distribution system with renewable DERs as shown in
Chapter 3. The convex SOC formulation enables the use of duality
theory for the main propositions of this chapter:

(i) to compute DLMPs that internalize the stochasticity of renewable
DERs and risk tolerance of the DSO and

(ii) to itemize DLMP components related to nodal active and reactive
power production and demand, balancing regulation, network
power losses and voltage support.

From a market perspective, this chapter describes an approach to
price generic distribution-level energy and reserve products ahead
of real-time operations (e.g. daily, hourly or sub-hourly). In that
sense, the model and pricing approach presented below are simi-
lar to a centralized market clearing problem in [12], which mini-
mizes social costs, schedules the available capacity of resources, and
derives marginal-cost-based transmission and distribution prices for
day-ahead, hour-ahead, or 5-min real-time markets. However, unlike
in [12], chance constraints endogenously determine both the system
reserve requirement and its network-constrained allocation given a
desired risk level and uncertainty parameters. The resulting stochas-
tic DLMPs capture these requirements and allocations and can be used
to establish a co-optimized stochastic distribution market, which at-
tains a market equilibrium under the assumption that all market par-
ticipants share similar knowledge about uncertain parameters. With
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increasing participation of DERs in the provision of grid support ser-
vices, such a distribution marketplace will allow for coordinating grid
support services among transmission and distribution systems. For
example, DER aggregators in Germany and Belgium seek to provide
regulation services at both the transmission and distribution level,
[183]. However, only the former provision is administrated on a mar-
ket basis, which makes distribution services less attractive for DER

aggregators. Hence, DLMPs that internalize desired risk levels and
uncertainty parameters can support the DSO in rolling out efficient
market platforms to incentivize DER participation in supporting dis-
tribution system operations.

6.2 model formulation

This chapter uses the CC-ACOPF for radial distribution systems as de-
rived in Section 3.4 with few modified notations as summarized in
Section 6.2.1 to simplify later derivations. Section 6.2.2 then extends
the model to include system losses.

6.2.1 Radial CC-ACOPF Modifications

reformulated cost function We use the quadratic cost func-
tion

ci(pG,i) = c2,i(pG,i)
2 + c1,ipG,i + c0,i

as introduced in (3.4), but for compactness of the following formula-
tions, we denote c2,i = 1/2bi, c1,i = ai/bi, c0,i = a2i /2bi. Given
these notations, the deterministic equivalent of the expected cost
E[ci(pG,i(ω))] (see (3.23) on page 38 for the detailed derivation), is:

E[ci(g
p
i )] =

(pG,i + ai)
2

2bi
+
α2i
2bi

S2, (6.1)

where ai > 0 and bi > 0 are given parameters and S2 := e>Σe.

reactive power uncertainty For ease of exposition, this
chapter assumes no uncertainty in the reactive power component.
This assumption may be valid if active power deviation ω is suffi-
ciently small so that coupled reactive power fluctuations can directly
be compensated by the power electronic interface between the DER

and the grid with suitable control policies, [20]. However, if uncer-
tainty in reactive power can not be neglected, the results in this Chap-
ter can be extended as similarly shown in Chapter 7. With setting
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ωq = 0 and using the previously established affine balancing policy,
see (3.7), we have:

pG,i(ω) = pG,i −αie>ω (6.2)

qG,i(ω) = qG,i (6.3)

ui(ω) = ui − Ri(I−αe
>)ω (6.4)

f
p
i (ω) = fpi +Ai(I−αe

>)ω (6.5)

f
q
i (ω) = fqi . (6.6)

Noticeably (6.2) and (6.5) remain unchanged relative to (3.60).

separation of participation factors from cones As de-
rived in Section 3.4, the standard deviation of ui(ω), as defined in
(6.4), is given by the second order conic expression

σ(ui(ω)) =
∥∥∥Ri(I−αe>)Σ∥∥∥

2
. (6.7)

To simplify differentiation with respect to α we first define auxiliary
vector

ρv = Rα, (6.8)

and note that the i-th entry of ρv is given as ρvi = Riα. Next we
define Ř = R−1. Since R := A> diag(r)A as per (3.50) and all ri in r
are positive and non-zero line resistances, R is positive definite and
R−1 exists. As a result we have that

α = Řρv (6.9)

and not that αi = Řiρv. Finally, we can formulate (6.7) as the follow-
ing two constraints:

tvi >
∥∥∥(Ri − ρvi e>)Σω∥∥∥

2
∀i ∈ N+ (6.10a)

αi = Řiρ
v ∀i ∈ N+. (6.10b)

The same can be achieved for flows with ρf := Aα and Ǎ = A−1.

complete model formulation We now introduce dual mul-
tipliers to all constraints of the resulting CC-ACOPF, which is restated
below for this purpose:

EQV-CC: min
{pG,i,qG,i,αi}i∈G,
{f
p
i ,fqi ,ui}i=N+

n∑
i=0

(
ci(pG,i) +

α2i
2bi

S2
)

(6.11a)

s.t.

(λp0 ) : pG,0 −
∑
j∈C0

f
p
j = 0 (6.11b)
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(λq0 ) : qG,0 −
∑
j∈C0

f
q
j = 0 (6.11c)

(λpi ) : f
p
i + pG,i −

∑
j∈Ci

f
p
j = pD,i i ∈ N+ (6.11d)

(λqi ) : f
q
i + qG,i −

∑
j∈Ci

f
q
j = qD,i i ∈ N+ (6.11e)

(βi) : ui + 2(rif
p
i + xif

q
i ) = uAi i ∈ N+ (6.11f)

(χ) :

n∑
i=1

αi +α0 = 1 (6.11g)

(δ+i ) : pG,i + zεpSαi 6 p
max
G,i i ∈ G (6.11h)

(δ−i ) : − pG,i + zεpSαi 6 −pmin
G,i i ∈ G (6.11i)

(θ+i ) : qG,i 6 q
max
G,i i ∈ G (6.11j)

(θ−i ) : − qG,i 6 −qmin
G,i i ∈ G (6.11k)

(ζi) : tvi >
∥∥∥(Ri + ρvi e>)Σ1/2∥∥∥

2
i ∈ N+ (6.11l)

(νvi ) :

n∑
j=1

Řijρ
v
j = αi i ∈ G (6.11m)

(µ+i ) : ui + 2zεvt
v
i 6 u

max
i i ∈ N+ (6.11n)

(µ−i ) : − ui + 2zεvt
v
i 6 −umin

i i ∈ N+ (6.11o)

(νfi) :

n∑
i=1

Ǎijρ
f
j = αi i ∈ G (6.11p)

(ζfi) : tfi >
∥∥∥(Ai − ρfie>)Σ1/2∥∥∥

2
i ∈ N+ (6.11q)

(ηi,c) : a1,c(f
p
i + zεft

f
i) + a2,cf

q
i + a3,cs

max
i 6 0

i ∈ N+, c ∈ {1, ..., 12} (6.11r)

Greek letters in parentheses are the dual multipliers assigned to
each constraint. See Appendix A on page 153 for more information
on dual multipliers. Also, note that balancing adequacy constraint
(6.11g) has been reformulated to separate the balancing contribution
α0 of the root node (substation) from the balancing participation
αi, i ∈ N+ of the DERs in the system.

6.2.2 Extension with Loss Factors

Model (6.11) can be extended to incorporate power losses to account
for their effect on prices. For this purpose we derive an approximate
linear mapping of nodal net injections into power losses, [68], [136],
[184]. We use the SOC-relaxed branch flow model as derived in Sec-
tion B.5. Here, the active and reactive power losses on edge i are given
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by liri and lixi, where li is the squared current on edge i. Using the
available demand forecast, we solve:

min
{pG,i,qG,i,αi}i∈G,
{f
p
i ,fqi ,ui}i=N+

n∑
i=0

(
ci(pG,i) +

α2i
2bi

S2
)

(6.12a)

s.t. (6.11g)–(6.11k)

f
p
i + pG,i −

∑
j∈Ci

(fpj + ljrj) = d
p
i i ∈ N (6.12b)

f
q
i + qG,i −

∑
j∈Ci

(fqj + ljxj) = d
q
i i ∈ N (6.12c)

ui + 2(rif
p
i + xif

q
i ) + li(r

2
i + x

2
i ) = uAi

i ∈ N+ (6.12d)

(fpi )
2 + (fqi )

2

ui
6 li i ∈ N+ (6.12e)

umin
i 6 ui 6 u

max
i i ∈ N+ (6.12f)

(fpi )
2 + (fqi )

2 6 (smax
i )2 i ∈ N+ (6.12g)

(fpi −l
p
iri)

2+(fqi −l
q
ixi)

26 (smax
i )2 i ∈ N+. (6.12h)

The branch flow model in (6.12), which accounts for the power losses
in (6.12b) and (6.12c), is modified to include decision variables αi, i ∈
G and the (linear) deterministic equivalents of the generation chance
constraints (6.11h) and (6.11i) to compute reserve zεpsαi, i ∈ G. The
solution of (6.12) is used below as a linearization point to compute
loss factors. We denote this linearization point as {pi, i ∈ G;qi, i ∈
G; fpi , i ∈ N+; fqi , i ∈ N+;ui, i ∈ N; li, i ∈ N+}.

Since the power losses of each edge j in (6.12b) and (6.12c) are
allocated to its upstream node Aj, terms

∑
j∈Ci ljrj,

∑
j∈Ci ljxj at

each node i can be interpreted as a (additional) fictitious nodal de-
mand (FND) at node i, [136]. To approximate the FND around the lin-
earization point, we first obtain the sensitivity of current li(f

p
i , fqi ,ui)

at the linearization point with respect to changes in active and reac-
tive nodal net demand and production. Assuming that (6.12e) is tight
at the optimum of (6.12), [185], we compute:

L
p
ik :=

∂li
∂pD,k

= −
∂li
∂pG,k

=
(
2f
p
i Aik + 2f

q
i Aik

) 1
ui

(6.13)

L
q
ik :=

∂li
∂qD,k

= −
∂li
∂qG,k

=
(
2f
p
i Aik + 2f

q
i Aik

) 1
ui

, (6.14)

where Lpik and L
q
ik define the sensitivity of power losses of edge i

to active and reactive power changes at node k. Next, using (6.13)
and (6.14), we can find the sensitivity of the active FND at node i
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to active and reactive net demand deviations from the linearization
point at node j as:

LPpij =
∑
k∈Ci

L
p
kjrk, LPqij =

∑
k∈Ci

L
q
kjrk (6.15)

and the sensitivity of reactive FND at node i to active and reactive net
demand deviations from the linearization point at node j as:

LQpij =
∑
k∈Ci

L
p
kjxk, LQqij =

∑
k∈Ci

L
q
kjxk. (6.16)

Since the forecast demand is fixed, the linearized FND only de-
pends on the deviation of active and reactive production levels
(pG,i − pG,i), i ∈ G, and (qG,i − qG,i), i ∈ G. Thus, the loss-aware
nodal power balance constraints are given as:

(λpi ) : f
p
i + pG,i −

∑
j∈Ci

(fpj + ljrj) + Plossi(pG,pG) = pD,i (6.17)

(λqi ) : f
q
i − qG,i −

∑
j∈Ci

(fqj + ljxj) + Qlossi(pG,pG) = qD,i, (6.18)

where:

Plossi(pG,qG) :=
∑
j∈G

(LPpij(pG,j − pG,j) + LPqij(qG,j − qG,j))

(6.19)

Qlossi(pG,qG) :=
∑
j∈G

(LQpij(pG,j − pG,j) + LQqij(qG,j − qG,j)).

(6.20)

To determine the impact of power losses with respect to uncertainty
ω, we define matrices LPp and LQp with elements LPpij and LQpij
given by (6.15) and (6.16). Using these matrices, we define the loss-
aware extensions of matrices A and R denoted as AL and RL:

AL := A(I+ LPp) (6.21)

RL := A>(diag(r)AL + diag(x)ALQp). (6.22)

Therefore, the loss-aware modification of the EQV-CC is obtained
by substituting A with AL and R with RL and extending the nodal
power balances as given in (6.17) and (6.18). The CC-ACOPF model
with power losses is presented in detail in Section 6.3.3, see (6.46).

6.3 dlmps with chance-constrained limits

This section derives DLMPs from the EQV-CC in (6.11).
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6.3.1 DLMPs with Chance-Constrained Generation Limits

In this subsection, we consider a modification of the EQV-CC in (6.11)
that models chance constraints on the generation outputs in (6.11h)–
(6.11i) and other constraints are considered deterministically. This
modification is given below:

GEN-CC: min
{pG,i,qG,i,αi}i∈N,
{f
p
i ,fqi ,ui}i=N+

n∑
i=0

(
ci(pG,i) +

α2i
2bi

S2
)

(6.23a)

s.t. (6.11b)–(6.11k)

(µ+i ) : ui 6 u
max
i i ∈ N+ (6.23b)

(µ−i ) : − ui 6 −umin
i i ∈ N+ (6.23c)

(ηi) : (fpi )
2 + (fqi )

2 6 (smax
i )2 i ∈ N+. (6.23d)

We use the GEN-CC to compute the power and balancing regula-
tion prices, which are given by dual multiplier λpi and λqi of the power
balance constraint (6.11d) and (6.11e), as well as dual multiplier χ of
the system-wide balancing regulation condition in (6.11g). Thus, we
formulate and prove:

Proposition 6.1. Consider the GEN-CC in (6.23). Let λpi and λqi be the
active and reactive power prices defined as dual multipliers of constraints
(6.11d) and (6.11e). Then λpi and λqi are given by the following functions:

λ
p
i = λpAi + (λqi − λ

q
Ai

)
ri
xi

− 2ηi

(
f
p
i +

ri
xi
f
q
i

)
(6.24)

λ
q
i = λqAi + (λpi − λ

p
Ai

)
xi
ri

− 2ηi

(
f
q
i +

xi
ri
f
p
i

)
, (6.25)

where ηi is a dual multiplier of (6.23d).

Proof. The Karush-Kuhn-Tucker (KKT) optimality conditions for the
GEN-CC in (6.23) are:

(pG,i) :
(pG,i + ai)

bi
+ δ+i − δ−i − λpi = 0 i ∈ G (6.26a)

(qG,i) : θ+i − θ−i − λqi = 0 i ∈ G (6.26b)

(ui) : βi −
∑
j∈Ci

βj + µ
+
i − µ−i = 0 i ∈ N+ (6.26c)

(fpi ) : λ
p
i − λ

p
Ai

+ 2riβi + 2f
p
i ηi = 0 i ∈ N+ (6.26d)

(fqi ) : λ
q
i − λ

q
Ai

+ 2xiβi + 2f
q
i ηi = 0 i ∈ N+ (6.26e)

(αi) :
αi
bi
S2 + zεps(δ

+
i + δ−i ) − χ = 0 i ∈ N+ (6.26f)

(α0) :
α0
b0
S2 − χ = 0 (6.26g)
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0 6 δ+i ⊥ p
max
G,i − pG,i − zεpαis > 0 i ∈ G (6.26h)

0 6 δ−i ⊥ pG,i − zεpαis− p
min
G,i > 0 i ∈ G (6.26i)

0 6 θ+i ⊥ q
max
G,i − qG,i− > 0 i ∈ G (6.26j)

0 6 θ−i ⊥ qG,i − q
min
G,i > 0 i ∈ G (6.26k)

0 6 µ+i ⊥ u
max
i − ui > 0 i ∈ N+ (6.26l)

0 6 µ−i ⊥ ui − u
min
i > 0 i ∈ N+ (6.26m)

0 6 ηi ⊥ (smax
i )2 − (fpi )

2 − (fqi )
2 > 0 i ∈ N+. (6.26n)

Expressing λpi and λ
q
i from (6.26d) and (6.26e) instantly yields the

expressions in (6.24) and (6.25).

Remark 6.1. Eqs. (6.24) and (6.25) can also be used to couple DLMPs

and transmission LMPs for active and, if available, reactive power ob-
tained from wholesale market-clearing outcomes. Indeed, transmis-
sion LMPs can be parameterized in (6.24) and (6.25) as prices at the
root node, i.e. λp0 and λq0 .

Proposition 6.1 allows for multiple insights on the price formation
process. First, both λ

p
i and λ

q
i do not explicitly depend on uncer-

tainty and risk parameters. Next, as the second terms in (6.24) and
(6.25) reveal, λpi and λqi are mutually dependent. Furthermore, the
third terms in (6.24) and (6.25) demonstrates that λpi and λqi are both
equally dependent on active and reactive power flows fpi and fqi , as
well as edge characteristics ri and xi. Finally, if the distribution sys-
tem is not power-flow-constrained, i.e. ηi = 0 and (6.23d) is not bind-
ing, the third terms disappear in (6.24) and (6.25). However, even in
this case the DLMPs at different nodes would not be the same due the
need to provide both reactive and active power.

Since Proposition 6.1 relates prices λpi and λqi at neighboring nodes,
it implies that changing a real power injection at any node i can be
compensated by active and reactive power adjustments at either the
ancestor node or that node without any other changes in the system.
However, similarly to the discussion in [139], the physical dependen-
cies between the nodes are more complex and net injection changes
at one node will shift operating conditions at all other nodes. This
becomes clear when we reinterpret the results of Proposition 6.1 in
terms of the voltage limits given by (6.23b) and (6.23c). For this
purpose we express βi from (6.26c) and use it in (6.26d) and (6.26e).
Expressing λpi and λqi from (6.26d) and (6.26e) leads to:

λ
p
i = λpAi − 2ri

∑
j∈Di

(µ+j − µ−j ) + 2f
p
i ηi (6.27)

λ
q
i = λqAi − 2xi

∑
j∈Di

(µ+j − µ−j ) + 2f
q
i ηi. (6.28)
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Figure 6.1: A schematic representation of the auction.

Thus, if voltage limits are binding at downstream nodes j ∈ Di of
node i, i.e. µ+j 6= 0 or µ−j 6= 0, they will contribute to the result-
ing values of λpi and λ

q
i . Furthermore, expressions in (6.27) and

(6.28) show that if the distribution system is not voltage- or power-
flow-congested, i.e. µ+i = µ−i = ηi = 0, i ∈ N, DLMPs reduce to system-
wide prices equal to the prices at the root node, i.e. λpi = λ

p
0 and

λ
q
i = λq0 .
Unlike λpi and λqi , we find that the price for balancing regulation

explicitly depends on uncertainty and risk parameters:

Proposition 6.2. Consider the GEN-CC in (6.23). Let χ be the balancing
regulation price defined as a dual multiplier of constraint (6.11g). Then the
following function defines χ:

χ =
s∑n
i=0 bi

(
s+ zε

n∑
i=1

(δ+i + δ−i )bi

)
. (6.29)

Proof. Expressing αi and α0 from (6.26f) and (6.26g) in terms of χ and
using it (6.11g) yields:

1+
χb0
S2

= −

n∑
i=1

[
χ+ zεps(δ

+
i + δ−i )

] bi
S2

, (6.30)

which immediately leads to (6.29).

As per (6.29), χ depends on uncertainty, since S2 := e>Σe, as well
as risk tolerance of the DSO, since zεp = Φ−1(1− εp). Notably, the
balancing regulation price is always non-zero if there is uncertainty
in the system (i.e. S 6= 0). This is true even if none of the chance
constraints on output limits of DERs in (6.11h)-(6.11i) are binding, i.e.
δ+i = δ−i = 0, i ∈ N. In other words, as long as the forecast is not
perfect, there is a value on procuring a non-zero amount of balancing
regulation.

The prices resulting from Propositions 6.1 and 6.2 can be leveraged
by the DSO to organize a stochastic distribution electricity market,
e.g. via a centralized auction. Fig. 6.1 illustrates such an auction,
where, first, producers truthfully report their cost functions and tech-
nical characteristics to the DSO. Next, the DSO determines the optimal
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dispatch decisions and resulting prices for each market product us-
ing the best available forecast information. Finally, these decisions
and prices are communicated by the DSO to all producers. For this
stochastic electricity market, we define a competitive equilibrium as a
set of production levels and prices {pG,i, i ∈ G;αi, i ∈ G;πpi , i ∈ G;πα}
that (i) clears the market so that the production and demand quanti-
ties are balanced and

∑
i∈G αi = 1 and (ii) maximizes the profit of all

producers, under the market payment structured as πppG,i + πααi,
so that there is no incentive to deviate from the market outcomes.
See Appendix C for a more detailed discussion on competitive equi-
librium.

To show that the prices from Propositions 6.1 and 6.2 support the
competitive equilibrium, we consider the GEN-CC in (6.23) and the
behavior of each producer (controllable DER) is modeled as a risk-
neutral, profit-maximization:

{
max
pG,i,αi

Πi =

Payment︷ ︸︸ ︷
π
p
i pG,i + π

ααi

Cost︷ ︸︸ ︷
−ci(pG,i) −α

2
i

S2

2bi
(6.31)

s.t (δ−i , δ+i ) : p
min
G,i+zεpαis 6 pG,i 6 p

max
G,i − zεpαis

}
i ∈ G,

where Πi denotes the profit function of each controllable DER at node
i and {π

p
i ,πα} are active power and balancing regulation prices.

Remark 6.2. Since uncertainty and risk parameters, i.e. S2 = e>Σe

and zεp , are shared by the DSO and producers, we assume that this
knowledge is common and consensual. Although these parameters
can be exploited by the DSO to advance their self-interest and increase
security margins above reasonable levels at the expense of customers,
this behavior can be mitigated using benchmarking and performance-
based rate design practices, [186]–[188].

Considering this stochastic market, as in Fig. 6.1, we prove:

Theorem 6.1. Let {p∗G,i,α
∗
i , i ∈ G} be an optimal solution of the GEN-

CC in (6.23) and let {λP,∗
i , i ∈ N;χ∗} be the dual variables of (6.11d) and

(6.11e), then the set of production levels and prices {p∗G,i, i ∈ G;α∗i , i ∈
G;πpi , i ∈ G;πα} is a competitive equilibrium if πpi = λP,∗

i , i ∈ G, and
πα = χ∗.

Proof. The KKT optimality conditions for (6.31) are:

(pG,i) :
(pG,i + ai)

bi
+ δ+i − δ−i − πpi = 0 (6.32a)

(αi) :
αi
bi
S2 + zεps(δ

+
i + δ−i ) − π

α = 0 (6.32b)

0 6 δ+i ⊥ p
max
G,i − pG,i + zεpαi > 0 (6.32c)

0 6 δ−i ⊥ pG,i − zεpαis− p
min
G,i > 0. (6.32d)
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Using (6.32a) and (6.32b), we express πpi = −
(pG,i−ai)

bi
− δ+i + δ−i and

πα = −αibi S
2 − zεpS(δ

+
i + δ−i ). Similarly, we express λpi and χ from

(6.26a) and (6.26f). Therefore, λpi = −
(pG,i−ai)

bi
− δ+i + δ−i = π

p
i and

χ = −αibi S
2 − zεps(δ

+
i + δ−i ) = πα. If {p∗G,i,α

∗
i , i ∈ G}, it follows that

λP,∗
i = πgi and χ∗ = παi , i.e. {p∗G,i, i ∈ G;α∗i , i ∈ G;πpi , i ∈ G;πα} solves

(6.31) and maximizes Πi. Therefore, {p∗G,i, i ∈ G;α∗i , i ∈ G;πpi , i ∈
G;πα} is a competitive equilibrium.

Since both the DSO and producers are modeled as risk-neutral,
see (6.11) and (6.31), and share common knowledge about underly-
ing uncertainty parameters, the competitive equilibrium established
by Theorem 6.1 also corresponds to the welfare-maximization (cost-
minimization) solution, [130]. Notably, this property will hold as
long as the DSO and producers continue sharing common knowledge
about underlying uncertainty parameters, even if their attitudes to-
ward risk vary based on a given coherent risk measure, [130]. The im-
pact of risk-averse behavior is studied in Chapter 8. Although, from
the viewpoint of customers, internalizing the uncertainty and risk
parameter in the equilibrium prices from Theorem 6.1 may increase
electricity prices relative to the deterministic case, stochasticity-aware
prices will provide incentives to reduce their uncertainty, thus reduc-
ing balancing regulation needs in the system, or to exercise more flex-
ibility (e.g. to shift their demand to time periods with lower DLMPs).

Hence, using the competitive equilibrium of Theorem 6.1, we can
analyze the effect of the prices on the capacity allocation between the
power production and balancing regulation from the perspective of
each producer modeled as in (6.31). Let {πpi ,πα} be given prices and
let {p∗G,i,α

∗
i } be the optimal solution of (6.31) for these prices. The KKT

optimality conditions in (6.32a)–(6.32d) can be used to find paramet-
ric functions that determine the optimal dispatch of each controllable
DER. These functions depend on whether constraints in (6.31) are
binding or not. Since (6.31) has two inequality constraints, we con-
sider the following four cases:

1. δ+,∗
i = δ−,∗

i = 0: When (6.31) has no binding constraints, it
follows from (6.32a) and (6.32b) that:

p∗G,i = π
g
i bi − ai, α∗i =

παbi
S2

(6.33)

Inserting the optimal dispatch given by (6.33) into (6.32c)
and (6.32d) leads to the following relationship between prices
π
g
i and πα:

pmin
G,i + ai

bi
+ zεp

πα

S
6 πpi 6

pmax
G,i + ai

bi
− zεp

πα

S
. (6.34)
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2. δ+,∗
i 6= 0, δ−,∗

i = 0: Since δ+,∗
i 6= 0, only the upper limit is bind-

ing. Thus, (6.32c) yields p∗G,i + zεpα
∗
iS − p

max
G,i = 0, which in

combination with (6.32a) and (6.32b) leads to:

p∗G,i = p
max
G,i − zεpSα

∗
i (6.35a)

α∗i =
zεpS(p

max
G,i + ai − biπ

g
i ) + π

αbi

S2(1+ z2εp)
. (6.35b)

With the upper constraint binding, it follows from (6.34) that
(6.35) holds if:

π
p
i >

pmax
G,i + ai

bi
− zεp

πα

S
. (6.36)

3. δ+,∗
i = 0, δ−,∗

i 6= 0: This case is the opposite of the previous one
since only the lower limit is binding. Therefore, (6.32d) yields
−p∗G,i + zεpα

∗
iS+ p

P,min
G,i = 0, which in combination with (6.32a)

and (6.32b) leads to:

p∗G,i = p
min
G,i + zεpSα

∗
i (6.37a)

α∗i =
zεpS(g

min + ai − biπ
g
i ) − π

αbi

S2(1+ z2εp)
. (6.37b)

With the lower constraint binding it follows from (6.34) that
(6.37) holds if:

π
p
i 6

pmin
G,i + ai

bi
+ zεp

πα

S
. (6.38)

4. δ+,∗
i 6= 0, δ−,∗

i 6= 0: When both constraints of (6.31) are binding
it follows from (6.32c) and (6.32d) that:

p∗G,i =
pmax
G,i + p

min
G,i

2
, α∗i =

pmax
G,i − p

min
G,i

2zεpS
, (6.39)

where p∗G,i is the midpoint of the dispatch range and the up-
ward (pmax

G,i − p∗G,i) and downward (p∗G,i − p
min
G,i ) margins are

fully used for providing balancing regulation. In this case, it
follows from (6.34) that πα is independent of πpi and must be
as follows:

πα >
S(pmax

G,i − p
min
G,i )

2zεpbi
. (6.40)

The dispatch policies in (6.33), (6.35), (6.37) and (6.39) support the
competitive equilibrium established by Theorem 6.1 and can be im-
plemented locally at each DER, if there is communication to broadcast
prices πpi and πα.
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Remark 6.3. Eqs. (6.33)–(6.40) provide a parametric model of the reac-
tion of each producer to given price signals. By observing the pro-
vided production levels and balancing participation factors for given
prices over time, the DSO can use machine learning methods to esti-
mate these parameters. This enables the DSO to either verify reported
cost functions and technical characteristics or to establish a one-way
communication market framework as implemented in Chapeter 5 and
[P2] for demand-side management.

6.3.2 DLMPs with Chance-Constrained Voltage Limits

The the GEN-CC in (6.23) has deterministic voltage limits as given
by (6.23b) and (6.23c). We recast these limits as chance constraints,
which leads to the following optimization:

VOLT-CC: min
{pG,i,qG,i,αi}i∈N,
{f
p
i ,fqi ,ui}i=N+

n∑
i=0

(
ci(pG,i) +

α2i
2bi

S2
)

(6.41a)

s.t. (6.11b)–(6.11o) and (6.23d).

Similarly to the GEN-CC in (6.23) we formulate and prove for the
VOLT-CC in (6.41) the following proposition:

Proposition 6.3. Consider the VOLT-CC in (6.41). Let λpi , λqi and χ be
the active power, reactive power and balancing regulation prices at node i.
Then λpi , λqi are given by (6.27), (6.28) and χ is given by

χ =
S∑n
i=0 bi

(
S+ zε

n∑
i=1

(δ+i + δ−i )bi +

n∑
i=1

biν
v
i

)
, (6.42)

where νvi is the dual multiplier of (6.11m) given as:

νvi = 2zεv

n∑
j=1

Rji(µ
+
j + µ−j )

Rj(Σe+ S
2α)

σ[uj(ω,α)]
. (6.43)

Proof. The KKT optimality conditions for (6.41) are:

(6.26a)–(6.26e), (6.26g)–(6.26k) and (6.26n)

(αi) :
αi
bi
S2 + zεs(δ

+
i + δ−i ) − χ+ ν

v
i = 0

i ∈ N+ (6.44a)

(tvi ) : 2zε(µ
+
i + µ−i ) − ζi = 0 i ∈ N+ (6.44b)

(ρvi ) :

n∑
j=1

νvj Řji + ζi
(Ri + ρ

v
i e
>)Σe

tvi
= 0

i ∈ N+ (6.44c)
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0 6 µ+i ⊥ u
max
i − ui − 2zεvt

v
i > 0 i ∈ N+ (6.44d)

0 6 µ−i ⊥ ui − 2zεvt
v
i − u

min
i > 0. i ∈ N+. (6.44e)

Note that the KKT conditions hold due to the convex properties of the
SOC program, see Appendix A.3. It follows that the expressions for
λ
p
i , λqi are equal to the results of Proposition 6.1. Expression (6.42) is

obtained analogously to the proof of Proposition 6.2. To find (6.43)
we first express ρi from (6.11m) and ζi from (6.44b) and insert these
expressions into (6.44c). Second, if ζi 6= 0, then (6.11l) is tight which
means tvi = σ(uj(ω,α)) as per (6.7). Finally, given that Ř = R−1 as
shown in Section 6.2.1, (6.44c) can be recast as (6.43).

Proposition 6.3 highlights the difficulty of enforcing probabilis-
tic guarantees on system constraints (e.g. voltage limits) through
such individual price signals. While the structure of prices λpi , λqi
does not change relative to Proposition 6.1, price χ in (6.42) includes∑n
i=1 biν

v
i in addition to the terms in (6.29). This additional term

leads to a discrepancy between the amounts of balancing participa-
tion deemed optimal by the DSO, which seeks to minimize the system-
wide operating cost, and by individual producers, which seek to max-
imize their individual profit. Notably, the expression for νvi in (6.43)
depends on vector α, which includes participation factors at all nodes.
Hence, introducing voltage chance constraints makes balancing regu-
lation price χ dependent on the choice of participation factors at all
nodes and cannot be explained by purely local or neighboring volt-
age conditions, even in radial networks. Thus, if node i is such that
it has a high influence on the voltage magnitudes at other nodes (i.e.
as captured by matrix R, see (3.50)), the controllable DER at this node
is implicitly discouraged from providing balancing regulation and,
therefore, νvi drives the optimal choice of αi from the system perspec-
tive. However, since νvi is not part of (6.31) and thus uncontrolled
by DERs, it will not affect (6.32). This result shows that internalizing
the effect of stochasticity on voltage limits, which are enforced by
the DSO and by producers, will prevent the existence of a competi-
tive equilibrium enforced by Theorem 6.1 and, in this case, balancing
participation price χ must be adjusted to reflect this difference be-
tween the decision-making process of the DSO and controllable DERs.
Assume α∗,DSOi is the optimal amount of balancing regulation deter-
mined by the DSO by solving VOLT-CC. If the DSO broadcasts πα = χ∗

then DER i will decide on its optimal participation α∗,DERi by solving
(6.31). The resulting difference between those balancing participation
factors can then be quantified as:

α∗,DERi −α∗,DSOi =
bi
s
νvi (6.45)

Note that (6.45) is inversely proportional to the total uncertainty in
the distribution system (recall that S =

√
eΣe>), i.e. the discrepancy
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between the DER and DSO perspectives decreases as more uncertainty
is observed.

6.3.3 DLMPs with Losses

To asses the effect of power losses on DLMPs, we consider the follow-
ing optimization problem:

LVOLT-CC: min
{pG,i,qG,i,αi}i∈N,
{f
p
i ,fqi ,ui}i=N+

n∑
i=0

(
ci(pG,i) +

α2i
2bi

S2
)

(6.46a)

s.t. (6.17) and (6.18)

(6.11f)–(6.11k), (6.11n), (6.11o) and (6.23d)

(ζi) : tvi >
∥∥∥(RLi + ρvi e>)Σ1/2∥∥∥

2
i ∈ N+ (6.46b)

(νvi ) :

n∑
j=1

ŘLijρ
v
j = αi, i ∈ G (6.46c)

where ŘL := (RL)−1 and claim:

Proposition 6.4. Consider the LVOLT-CC in (6.46). Let λpi , λqi and χ be
the active power, reactive power and balancing regulation prices at node i.
Then:

a) Prices λpi , λqi are given by (6.27), (6.28) and χ is given by:

χ =
1∑n
i=0 bi

(
S2 + zεS

n∑
i=1

(δ+i + δ−i )bi +

n∑
i=1

biν
v
i

)
, (6.47)

where:

νvi = 2zεv

n∑
j=1

RLji(µ
+
j + µ−j )

RLj (Σe+ S
2α)

σ[uj(ω,α)]
. (6.48)

b) The optimal active production level p∗G,i is:

p∗G,i = bi(λ
p
i − (δ+i − δ−i ) + ξ

p
i (λ

p, λq)) − ai, (6.49)

where

ξ
p
i (λ

p, λq) :=
N∑
j=1

LPpji λ
p
j +

N∑
j=1

LQpji λ
q
j (6.50)
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Proof. Consider the KKT optimality conditions for (6.46):

(6.26c)–(6.26e) and (6.26g)–(6.26k)

(6.26n), (6.44d) and (6.44e)

(pG,i) :
(pG,i + ai)

bi
+ δ+i − δ−i − λpi (6.51a)

−

N∑
j=1

LPpji λ
p
j +

N∑
j=1

LQpji λ
q
j︸ ︷︷ ︸

ξ
p
i (λ

p,λq)

= 0 i ∈ G

(qG,i) : θ+i − θ−i − λqi (6.51b)

−

N∑
j=1

LPpji λ
p
j +

N∑
j=1

LQpji λ
q
j = 0 i ∈ G

(ρvi ) :

n∑
j=1

ηvj Ř
L
ji + ζi

(RLi + ρ
v
i e
>)Σe

ti
= 0. (6.51c)

i ∈ N+

Our result in Proposition 6.4a) follows directly from the proofs of
Propositions 6.1 and 6.3 with R replaced by RL (see (6.51c)). Then, our
result in Proposition 6.4b) follows directly from (6.51a) and (6.51b).

The term in (6.50) relates the DLMP and optimal production level
at node i to the DLMPs at all other nodes via the loss factors. For
example, if production at i has a high impact on active power losses
at node j (given by LPpji) and DLMP λpj is high, then active power
production at node i is discouraged by a lower DLMP λpi . Similarly
to Proposition 6.3, Proposition 6.4 reveals that power losses distort a
competitive equilibrium because they are not part of the individual
producers decisions.

6.4 illustrative case study

The case study is performed on the 15-node radial feeder from [139]
with two minor modifications: one controllable DER is added at node
11 (see Fig. 6.2) and the power flow limit of edges 2 and 3 is doubled
to avoid congestion in the deterministic case. Cost parameters of DERs

at nodes 6 and 11 are set to c1,i = 10 $/MWh, c2,i = 5 $/MWh2, c0,i = 0.
The substation cost is set to c1,0 = 50 $/MWh, c2,0 = 400 $/MWh2,
c0,0 = 0. Note that this selection incentivizes the use of DERs. The
data of [139] is used as scheduled net demand with a normally dis-
tributed zero-mean error, standard deviation of σpi = 0.2pD,i and no
covariance among the nodes. The security parameter of the chance
constraints is set to εp = 5% and εv = 1%. All models in the case
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Figure 6.2: DLMP difference ∆λpi of (a) GEN-CC and (b) VOLT-CC relative to
the deterministic case.

study are implemented using the Julia JuMP package and our code
can be downloaded from [178].

6.4.1 Effect of uncertainty on DLMPs

Tables 6.1–6.3 summarize the optimal solution and prices in the deter-
ministic, GEN-CC and VOLT-CC cases. Note that the deterministic
case is solved for the expected net demand and αi = 0,∀i. In the de-
terministic and GEN-CC cases, none of the generator limits are active
and, therefore, their power production does not differ. Similarly the
resulting voltage magnitudes do not change as the GEN-CC consid-
ers deterministic voltage constraints and only the flow limit of edges
8 and 6 are binding. In the VOLT-CC, however, the resulting voltage
magnitudes are closer to unity in order to accommodate real-time
power imbalances. As a result, the voltage constraints (6.11l)–(6.11o)
in the VOLT-CC yield non-zero dual multipliers. Fig. 6.2 itemizes the
effect of uncertainty on λpi relative to the deterministic case, where
∆λ
p
i = λ

P,(GEN-CC/VOLT-CC)
i − λ

P,(DET)
i . While the passive branch of

the system (nodes 12 to 14 without any controllable DERs) shows no
changes in DLMPs as it is fully supplied by the substation, DLMPs vary
in the branches with DERs.

6.4.2 Price Decomposition

Tables 6.4 and 6.5 itemize the components of the energy price follow-
ing Proposition 6.1. Additionally, Fig. 6.3 illustrates the nodes and
edges with binding limits and, thus, non-zero Lagrangian multipli-
ers. Since the GEN-CC has no active voltage constraints the energy
price at each node is determined by λpAi , i.e. the energy price at the
ancestor node, and the congestion as per (6.24). There is no reactive
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Table 6.1: Optimal Deterministic Solution

i pG,i qG,i αi

√
(fpi )

2 + (fqi )
2 vi λ

p
i

0 0.994 0.344 – 0.000 1.000 50.000

1 – – – 0.404 0.975 50.000

2 – – – 0.446 1.012 50.000

3 – – – 0.446 1.067 50.000

4 – – – 0.210 1.071 50.000

5 – – – 0.227 1.074 50.000

6 0.278 0.006 – 0.256
*

1.086 10.411

7 – – – 0.197 1.086 10.208

8 – – – 0.256
*

1.077 10.208

9 – – – 0.083 1.078 10.208

10 – – – 0.108 1.081 10.208

11 0.140 0.032 – 0.130 1.082 10.208

12 – – – 0.660 0.983 50.000

13 – – – 0.025 0.978 50.000

14 – – – 0.024 0.975 50.000

* Constraint is binding

Table 6.2: Optimal GEN-CC Solution

i pG,i qG,i αi

√
(fpi )

2 + (fqi )
2 vi λ

p
i χ

0 0.994 0.344 0.003 0.000 1.000 50.00 0.273

1 – – – 0.404 0.975 50.00 –
2 – – – 0.446 1.012 50.00 –
3 – – – 0.446 1.067 50.00 –
4 – – – 0.210 1.071 50.00 –
5 – – – 0.227 1.074 50.00 –
6 0.278 0.006 0.646 0.256

*
1.086 11.99 –

7 – – – 0.197 1.086 8.769 –
8 – – – 0.256

*
1.077 8.769 –

9 – – – 0.083 1.078 8.769 –
10 – – – 0.108 1.081 8.769 –
11 0.140

*
0.032 0.351 0.130 1.082 8.769 –

12 – – – 0.660 0.983 50.00 –
13 – – – 0.025 0.978 50.00 –
14 – – – 0.024 0.975 50.00 –

* Constraint is binding



6.4 illustrative case study 109

Table 6.3: Optimal VOLT-CC Solution

i pG,i qG,i αi

√
(fpi )

2 + (fqi )
2 vi λ

p
i χ

0 1.033 0.490 0.377 0.000 1.000 50.00 31.51

1 – – – 0.523 0.956 49.97 –
2 – – – 0.439 0.972 47.88 –
3 – – – 0.439 0.996 44.59 –
4 – – – 0.208 0.997 44.83 –
5 – – – 0.222 0.999

*
45.056 –

6 0.258 -0.068 0.370 0.256
*

1.005
*

12.03 –
7 – – – 0.197 1.011

*
3.884 –

8 – – – 0.256
*

1.001 8.577 –
9 – – – 0.090 1.001 9.111 –

10 – – – 0.100 1.001
*

10.39 –
11 0.121 -0.040 0.253 0.116 1.002

*
10.95 –

12 – – – 0.660 0.983 50.00 –
13 – – – 0.025 0.978 50.00 –
14 – – – 0.024 0.975 50.00 –

* Constraint is binding

power price component due to inactive voltage limits. In the VOLT-
CC case, on the other hand, the voltage limits become active and
therefore reactive power price is non-zero.

In Fig. 6.2 we observe higher prices at and close to the nodes with
DERs. As follows from Eq. (6.27) and summarized in Table 6.6, prices
at those nodes are dominated by the lower voltage limits, thus quan-
tifying the value of downward regulation. A negative net demand
value at node 7 indicates a high uncontrolled behind-the-meter gener-
ation, which leads to low prices dominated by the upper voltage limit.
This incentivizes a higher demand and lower generation. At node 6
both the upper and lower voltage limits are binding (see Fig. 6.3 and
non-zero µ+6 ,µ−6 in the bottom row of Table 6.6), thus indicating that
no more balancing regulation at this node is possible without increas-
ing the likelihood of voltage limit violations. Hence, the trade-off be-
tween the power output and balancing regulation of the DER at node
6 is no longer driven by its profit-maximizing objective, but rather by
the the physical limits of the system.

The regulation price in the GEN-CC case (χGEN-CC = 0.273) is no-
tably lower relative to the VOLT-CC case (χVOLT-CC = 31.511). As per
Proposition 6.2, χGEN-CC is only driven by the power output limits
(Table 6.7), where only the lower output limit at node 11 is bind-
ing. Due to a low power price at node 11 as compared to node 6,
the scheduled power production is also low, which limits the down-
ward regulation capacity provided. By introducing voltage chance
constraints in the VOLT-CC case, the DLMP composition changes as
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Figure 6.3: Illustration of binding edge, voltage and generation limits in the
GEN-CC and the VOLT-CC.

per Proposition 6.3 (Table 6.7). Each node with binding voltage con-
straints (5, 6, 7, 10, 11) contributes to the formation of χ by weighting
the impact of the system-wide regulation participation on the volt-
age standard deviation against the marginal value of relaxed voltage
limits for each node (Eq. 6.43).

6.4.3 Impact of Losses

Table 6.8 summarizes the optimal LVOLT-CC solution obtained by
using loss factor matrices LPp, LPq, LQp, LQq as defined in (6.15)
and (6.16) and shown in Fig. 6.4. Negative elements of the matrices
shown in Fig. 6.4 indicate that additional DER production at node
j will increase power losses allocated to node i based on FND. For
example, LPp shows that additional active production at nodes 0 to
11 will increase active power losses. On the other hand, additional
active production on the passive branch (nodes 12 to 14), where no
DERs are installed, will reduce active power losses.

Since increasing DER production at nodes 6 and 11 increases system
losses, see Fig. 6.4, we observe that the power output of controllable
DERs changes slightly, as compared to the results of the VOLT-CC, and
the additional power needed to compensate for system losses is pro-
vided by the substation (node 0). By internalizing the loss factors into
the voltage chance constraints via matrix RL as in (6.22), the impact of
balancing participation on the voltage limits is no longer symmetric
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Figure 6.4: Illustration of loss factor matrices LPp, LPq, LQp, LQq itemizing
the sensitivity of active and reactive nodal net injections at node
j (‘x-axis’) on the active and reactive FND of node i (‘y-axis’).
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Table 6.4: DLMP Decomposition of the GEN-CC, cf. Eq. (6.24)

i λ
p
i λ

p
Ai

λ
q
i
ri
xi

λ
q
Ai

ri
xi

2ηi(f
p
i +

ri
xi
f
q
i )

0 50.000 -0.000 -0.000 -0.000 0.000

1 50.000 50.000 0.000 0.000 -0.000

2 50.000 50.000 0.000 0.000 0.000

3 50.000 50.000 0.000 0.000 0.000

4 50.000 50.000 0.000 0.000 -0.000

5 50.000 50.000 0.000 0.000 0.000

6 11.996 50.000 0.000 0.000 38.004

7 8.769 8.769 0.000 0.000 0.000

8 8.769 50.000 0.000 0.000 41.231

9 8.769 8.769 0.000 0.000 -0.000

10 8.769 8.769 0.000 0.000 0.000

11 8.769 8.769 0.000 0.000 -0.000

12 50.000 50.000 0.000 0.000 0.000

13 50.000 50.000 0.000 0.000 0.000

14 50.000 50.000 0.000 0.000 0.000

as in (3.50). Thus, we observe higher balancing participation factors
of the DERs at nodes 6 and 11 relative to the VOLT-CC. Additionally,
a greater power supply from the substation and the DER at node 11
leads to non-binding voltage constraints and, thus, uniform DLMPs at
nodes 8 to 11. In line with the theoretical results of Proposition 6.4a),
the additional power losses have almost no impact on the price for
balancing regulation. The small difference relative to the VOLT-CC is
mainly caused by non-binding voltage constraints at nodes 10 and 11.

6.5 conclusion

This chapter described an approach to derive stochasticity-aware
DLMPs for electricity pricing in low-voltage electric power distribu-
tion systems that explicitly internalize uncertainty and risk param-
eters. These DLMPs are also shown to constitute a robust competi-
tive equilibrium, which can be leveraged towards emerging distribu-
tion electricity market designs. In the future, our work will focus on
the application of the proposed pricing theory to decentralized and
communication-constrained control of DERs and for enabling electric-
ity pricing in distribution systems with a high penetration rate ofDERs

and near-zero marginal production costs. Methodological extensions
can encompass uncertainty internalization via semidefinite program-
ming to allow for non-linear power flow representations, [189], and
the impact of asymmetric information and strategic behavior.
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Table 6.5: DLMP Decomposition of the VOLT-CC, cf. Eq. (6.24)

i λ
p
i λ

p
Ai

λ
q
i
ri
xi

λ
q
Ai

ri
xi

2ηi(f
p
i +

ri
xi
f
q
i )

0 50.000 -0.000 -0.000 -0.000 0.000

1 49.976 50.000 0.024 0.000 -0.000

2 47.881 49.976 4.088 1.993 0.000

3 44.596 47.881 7.373 4.088 0.000

4 44.836 44.596 7.132 7.373 -0.000

5 45.056 44.836 6.887 7.108 0.000

6 12.025 45.056 0.000 6.911 39.942

7 3.884 8.577 7.072 2.379 0.000

8 8.577 44.596 2.376 7.369 41.012

9 9.111 8.577 1.842 2.376 -0.000

10 10.399 9.111 0.552 1.840 0.000

11 10.949 10.399 0.000 0.550 -0.000

12 50.000 50.000 0.000 0.000 0.000

13 50.000 50.000 0.000 0.000 0.000

14 50.000 50.000 0.000 0.000 0.000

Table 6.6: DLMP Decomposition of the VOLT-CC based on voltage con-
straints, cf. Eq. (6.27)

i λ
p
i (µ+i −µ

−
i ) λ

p
Ai

2ri
∑
j∈Di

(µ+j −µ
−
j ) 2f

p
i ηi

0 50.000 0.000 -0.000 -0.000 0.000

1 49.976 -0.000 50.000 0.024 -0.000

2 47.881 -0.000 49.976 2.096 0.000

3 44.596 -0.000 47.881 3.285 0.000

4 44.836 -0.000 44.596 -0.240 -0.000

5 45.056 -0.001 44.836 -0.220 0.000

6 12.025 -6.290
†

45.056 -0.606 33.638

7 3.884 44.871 8.577 4.694 0.000

8 8.577 -0.000 44.596 1.478 34.541

9 9.111 -0.000 8.577 -0.534 -0.000

10 10.399 -0.004 9.111 -1.288 0.000

11 10.949 -26.709 10.399 -0.550 -0.000

12 50.000 -0.000 50.000 -0.000 0.000

13 50.000 -0.000 50.000 -0.000 0.000

14 50.000 -0.000 50.000 -0.000 0.000

† µ+6 = 20.186, µ−6 = 26.476
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Table 6.7: Regulation Price Decomposition of the VOLT-CC

GEN-CC VOLT-CC
i bi δ+i δ−i δ+i δ−i νi

0 0.0005 – – – – –
1 – – – – – 0.120

2 – – – – – 10.699

3 – – – – – 27.281

4 – – – – – 28.199

5 – – – – – 29.040

6 0.1 -0.000 -0.000 -0.000 -0.000 31.357

7 – – – – – 32.533

8 – – – – – 30.201

9 – – – – – 30.472

10 – – – – – 31.126

11 0.1 -0.000 0.310 -0.000 -0.000 31.406

12 – – – – – 0.000

13 – – – – – 0.000

14 – – – – – 0.000

Table 6.8: Optimal LVOLT-CC Solution

i pG,i qG,i αi

√
(fpi )

2 + (fqi )
2 vi λ

p
i χ

0 1.075 0.607 0.144 0.000 1.000 50.000 30.254

1 – – – 0.576 0.952 49.971 –
2 – – – 0.422 0.966 47.417 –
3 – – – 0.433 0.997 43.414 –
4 – – – 0.209 0.998 43.666 –
5 – – – 0.223 0.999 43.897 –
6 0.256 -0.077 0.515 0.256

*
1.005

*
14.005 –

7 – – – 0.197 1.016
*

6.372 –
8 – – – 0.256

*
1.006 4.169 –

9 – – – 0.079 1.007 4.169 –
10 – – – 0.102 1.009 4.169 –
11 0.137 0.012 0.341 0.124 1.011 4.169 –
12 – – – 0.661 0.983 50.000 –
13 – – – 0.026 0.978 50.000 –
14 – – – 0.024 0.975 50.000 –

* Constraint is binding



7
R I S K - A N D VA R I A N C E - AWA R E C O O R D I N AT I O N I N
T R A N S M I S S I O N S Y S T E M S

This chapter departs from studying (radial) distribution systems and
generalizes the results of previous Chapter 6 towards a (meshed) AC

system formulation. Assuming a complete electricity market, this
chapter corroborates the existence of a competitive equilibrium from
these risk-aware prices. Additionally, this chapter shows how the
previously passively limited volatility of system state-variables can
be reduced to improve system stability and equipment durability.

The contents of this chapter have been published in 2020 as the
article entitled “Risk- and variance-aware electricity pricing” in the
Electric Power Systems Research journal, [P4]. For this dissertation, the
original article has been moderately adapted to ensure unified nota-
tions and connections to other chapters.

7.1 introduction

Power systems and electricity markets struggle to accommodate the
massive roll-out of RES, which are stochastic in nature and impose
additional risks on the system operations and market-clearing deci-
sions. The current industry practice to mitigate these risks is based
on procuring additional reserves, which are selected based on exoge-
nous and often ad-hoc policies (e.g., 95-percentile rule in ERCOT, [63],
or (5+7) rule in CAISO, [64]).

Alternatively, such risk assessments can be carried out endoge-
nously, i.e. while optimizing operational and market-clearing deci-
sions, using high-fidelity prediction and historical data parameters
the RES stochasticity. As discussed in previous Chapters, the CC-OPF

has been shown to scale efficiently for large networks [143], accom-
modate various assumptions on the RES stochasticity (e.g. paramet-
ric distributions and distributional robustness) [P1], [P2], [143], [190],
[191], as well as to accurately account for AC power flow physics, [68],
[102]. However, this framework has primarily been applied to risk-
aware operational planning in a vertically integrated environment,
neglecting market considerations. From a market design perspective,
RES stochasticity has been primarily dealt with using scenario-based
stochastic programming, e.g. [43], [72], [73], which is more computa-
tionally demanding than chance constraints, [7].

With the exception of [P3], [9], [127], chance constraints have so
far been overlooked in electricity pricing applications. The chance-
constrained market design proposed in [9] leads to a stable robust

115
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equilibrium that, unlike scenario-based approaches in [43], [72], [73],
guarantees desirable market properties, i.e. welfare maximization,
revenue adequacy and cost recovery, under various assumptions on
the RES stochasticity. Therefore, the resulting energy and reserve
prices make it possible to better approximate real-time operating con-
ditions for look-ahead dispatch applications, thus improving consis-
tency between look-ahead and real-time stages. However, [9] neglects
network constraints, an important modeling feature for real-life mar-
ket applications.

In this Chapter we use the CC-ACOPF from Chapter 3 to derive
network-aware electricity prices that internalize the RES stochasticity
with the intention to produce more accurate signals to market par-
ticipants. This convex formulation allows the use of duality theory
to derive risk-aware marginal-cost-based prices, which are similar
to traditional deterministic locational marginal prices (LMPs) based
on linear duality, [120]. Furthermore, the CC-ACOPF can explicitly
consider reactive power and voltage support services and analyze
their role in the deliverabilty of active power, thus supporting the
design of a more “complete” electricity market, [192], [193]. Complet-
ing the market by allowing all assets and services (active and reac-
tive power, reserve capacity, transmission and voltage support) to be
transacted, [193], makes it possible to co-align technical needs and
requirement imposed by the physical aspects of power system op-
erations and price signals received by market participants. Notably,
the proposed CC-ACOPF market clearing enables the completion of the
wholesale electricity market, but also accommodates the operational
requirements of sub-transmission and distribution networks, e.g. for
the design of distribution or local electricity markets, [P3]. We also
extend the CC-ACOPF to follow a variance-aware dispatch paradigm, in-
troduced in [142], to compute variance-aware prices and analyze the
relationship between the system cost, risk and variance.

7.2 model formulation

We use the CC-ACOPF from Section 3.3 with the modified objective
from Section 6.2.1 and assign dual variables (Greek letters in paren-
theses) to all constraints:

EQV-CC : min
pG,qG
v,α,θ

∑
i∈G

ci(pG,i) +
∑
i∈G

α2i
2bi

S2 (7.1a)

s.t.

(λpi , λqi ) : (3.27), (3.28) (7.1b)

(βpij,β
q
ij) : (3.29), (3.30) (7.1c)

(χ) :
∑
i∈G

αi = 1 (7.1d)
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(δp,+
i ) : pG,i +αizεpS 6 p

max
G,i i ∈ G (7.1e)

(δp,−
i ) : − pG,i +αizεpS 6 −pminG,i i ∈ G (7.1f)

(δq,+
i ) : qG,i + zεqt

q
i 6 q

max
G,i i ∈ G (7.1g)

(δq,−
i ) : − qG,i + zεqt

q
i 6 −qminG,i i ∈ G (7.1h)

(ζqi ) :
∥∥∥(Rqi −ρqi e>+Xqi diag(γ))Σ1/2

∥∥∥
2
6 tqi i ∈ G (7.1i)

(νqi ) : R
q
i α = ρqi i ∈ G (7.1j)

(µ+i ) : vi + zεvt
v
i 6 v

max
i i ∈ N (7.1k)

(µ−i ) : − vi + zεvt
v
i 6 −vmini i ∈ N (7.1l)

(ζvi ) :
∥∥∥(Rvi−ρvi e>+Xvi diag(γ))Σ1/2

∥∥∥
2
6 tvi i ∈ G (7.1m)

(νvi ) : Rviα = ρvi i ∈ N (7.1n)

(ηij) : (af
p

ij )
2 + (af

q

ij )
2 6 (smaxij )2, ij ∈ L (7.1o)

(ξf
p,+
ij ) : − af

p

ij + zεf/2.5t
fp

ij 6 f
p
ij ij ∈ L (7.1p)

(ξf
p,−
ij ) : − af

p

ij + zεf/2.5t
fp

ij 6 −fpij ij ∈ L (7.1q)

(ξf
p,0
ij ) : zε/5t

fp

ij 6 a
fp

ij ij ∈ L (7.1r)

(ξf
q,+
ij ) : − af

q

ij + zεf/2.5t
fq

ij 6 f
q
ij, ij ∈ L (7.1s)

(ξf
q,−
ij ) : − af

q

ij + zεf/2.5t
fq

ij 6 −fqij, ij ∈ L (7.1t)

(ξf
q,0
ij ) : zεf/5t

fq

ij 6 a
fq

ij ij ∈ L (7.1u)

(ζ�ij) :
∥∥∥(R�i − ρ�ie> +X�i diag(γ))Σ1/2

∥∥∥
2
6 t�i

ij ∈ L, � = fp, fq (7.1v)

(ν�ij) : R�ijα = ρ�ij ij ∈ L, � = fp, fq, (7.1w)

Objective (7.1a) minimizes the expected cost as in (6.1). Eqs. (7.1b)
and (7.1c) are the active and reactive power balances and flows based
on the linearized AC power flow equations. Eq. (7.1d) is the bal-
ancing reserve adequacy constraint and (7.1e)–(7.1w) are the deter-
ministic chance constraints reformulation, see Section 3.3 on page 39.
Constraints (7.1e) and (7.1f) limit the active power production pG,i

and the amount of reserve αizεpS provided by each generator, [P3],
[9]. As before, risk parameters are given by zε = Φ−1(1 − ε). Al-
though less restrictive assumptions on the distribution of ω can be
invoked in (7.1), e.g. by means of non-Gaussian parametric distri-
butions [190] or distributionally robust formulations [P1], [9], this
chapter assumes normally distributed forecast errors for the sake of
presentation clarity. See also discussion in Box 1 on page 32. The stan-
dard deviation of reactive power outputs, voltage levels and flows
resulting from the uncertainty and the system response is given by
the SOC constraints (7.1i), (7.1m) and (7.1v). Given the convexity of
the SOC constraints, auxiliary variables tqi , tvi , tf

p

ij , tf
q

ij relate these
standard deviations to the reactive output limits (7.1g) and (7.1h),
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voltage bounds (7.1k) and (7.1l) and flow limits (7.1p)–(7.1u). Due
to its quadratic dependency on the uncertain variable, the transmis-
sion limit chance constraints require a more complex reformulation,
see Section 3.3.3. To accommodate this reformulation, we introduce
auxiliary variables af

p

ij , af
q

ij and risk parameters εf/2.5 and εf/5 (i.e.
εf divided by 2.5 and 5), respectively. Auxiliary variables ρvi , ρf

p

ij ,
ρf
q

ij and constraints (7.1j), (7.1n) and (7.1w) have been introduced to
simplify subsequent derivations, see Section 6.2.1. Noticeably, (7.1) in-
cludes convex quadratic objective and second-order conic constraints.
Although it can be reformulated into a purely conic program to gain
computational tractability, see Appendix A.3 or [177], [194], the form
in (7.1) allows for a clear presentation below.

7.3 risk-aware pricing

The EQV-CC in (3.42) endogenously trades off the expected operating
point (pG,qG, v, θ,γ,α) and the risk of system limit violations defined
by the choice of parameters zεp , zεq , zεv , zεf/2.5, zεf/5. Since the EQV-
CC is a convex program, we can use its dual form to compute the
marginal prices for active and reactive power, and balancing reserve
that internalize this trade-off.

7.3.1 Prices with Chance Constraints on Generation

First, we consider a modification of the EQV-CC given as:

GEN-CC : min
pG,qG
v,α,θ

∑
i∈N

ci(pG,i) +
∑
i∈N

α2i
2bi

S2 (7.2a)

s.t. (7.1b)–(7.1f)

(δq,+
i , δq,−

i ) : qminG,i 6 qG,i 6 q
max
G,i (7.2b)

(µ−i ,µ+i ) : vmini 6 vi 6 v
max
i (7.2c)

(ηij) : (fpij)
2 + (fqij)

2 6 (smaxij )2, (7.2d)

where, relative to the EQV-CC in (7.1), chance constraints are only en-
forced on active power generation limits and reactive power, voltage
and power flow constraints are enforced deterministically by (7.2b)–
(7.2d). In other words, the GEN-CC determines the optimal balancing
participation of each generator and, thus, the optimal amount and al-
location of committed reserve given by αizεpS. Therefore, the GEN-
CC replicates a traditional deterministic OPF that allocates the reserve
requirement (

∑
i∈G αizεpS = zεpS) among individual generators, see

[9].
Using the GEN-CC, we compute the following prices:
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Proposition 7.1. Consider the GEN-CC in (7.2). Let λpi , λqi be dual mul-
tipliers of the nodal active and reactive power balance at node i in (7.1b).
Then λpi and λqi are given as:

λ
p
i =

pG,i + ai
bi

+ δp,−
i − δp,+

i (7.3)

λ
q
i = δq,−

i − δq,+
i . (7.4)

Proof. The first order optimality conditions of (7.2) for pG,i, qG,i, αi,
f
p
ij, f

q
ij are:

(pG,i) : λ
p
i + (δp,+

i − δp,−
i ) =

pG,i + ai
bi

i ∈ G (7.5a)

(qG,i) : λ
q
i + (δq,+

i − δq,−
i ) = 0 i ∈ G (7.5b)

(αi) : zεpS(δ
p,+
i + δp,−

i ) + χ =
αi
bi
S2 i ∈ G (7.5c)

(fpij) : 2f
p
ijηij +β

fp

ij = 0 ij ∈ L (7.5d)

(fqij) : 2f
q
ijηij +β

fq

ij = 0 ij ∈ L. (7.5e)

Eqs. (7.3) and (7.4) follow directly from (7.5a) and (7.5b).

Dual multiplier λpi of the active power balance, itemized in (7.3),
is interpreted as the real power LMP at node i and a function of pro-
duction cost coefficients ai,bi and scarcity rent δp,+

i , δp,−
i related to

active generation limits. Dual multiplier λqi of the reactive power
balance, itemized in (7.4), is interpreted as the reactive power LMP

given by scarcity rent δq,+
i , δq,−

i related to reactive generation limits.
Although there is no explicit production cost for reactive power in
(7.1a), providing reactive power can have a non-zero value, if at least
one reactive power limit is binding. Further, Proposition 7.1 shows
that both λpi and λ

q
i in (7.3) and (7.4) do not explicitly depend on

uncertainty and risk parameters.
In contrast, the price for balancing reserve explicitly depends on

the uncertainty and set risk levels:

Proposition 7.2. Consider the GEN-CC in (7.2). Let χ be the dual mul-
tiplier of the balancing adequacy constraint in (7.1d). Then χ is given as:

χ =
1∑
i∈G bi

(
S2 + zεpS

∑
i∈G

bi(δ
p,+
i + δp,−

i )
)

. (7.6)

Proof. Using (7.1d) to eliminate αi in (7.5c) yields (7.6).

Dual multiplier χ of (7.1d) is interpreted as the price for balancing
reserve, because it enforces sufficiency of the system-wide reserve. As
per (7.6), χ is an explicit function of the uncertainty S2 = e>Σe and
risk parameter zεp . Notably, the balancing reserve price is always
non-zero, if there is uncertainty in the system (i.e. S > 0), even if all
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constraints (7.1e) and (7.1f) are inactive, i.e. δp,+
i = δ

p,−
i 0,∀i ∈ G. In

this case, χ is independent of the risk parameters and is determined
by the total uncertainty S2 weighted by the total marginal generator
cost

∑
i∈G bi of all generators, i ∈ G, including those generators that

do not provide any balancing reserve, i.e. αi = 0.

7.3.2 Prices with Complete Chance Constraints

We now consider the complete EQV-CC in (7.1), i.e. including chance
constraints on reactive power generation, voltages and flows, and
prove the following proposition:

Proposition 7.3. Consider the EQV-CC in (7.1). Let λpi , λqi be dual multi-
pliers of the nodal active and reactive power balances at node i as in (7.1b).
Further, let χ be the dual multiplier of the balancing adequacy constraint in
(7.1d). Then (i) λpi and λqi are given as (7.3) and (7.4) and (ii) χ is given
as:

χ=
1∑
i∈Gbi

Influenced by generator decisions︷ ︸︸ ︷(
S2+zεS

∑
i∈G

bi(δ
+
i+δ

−
i ) +

Influenced by system decisions︷ ︸︸ ︷∑
i∈G

bi(y
q
i+y

v
i+y

fp+yf
q

)
)

, (7.7)

where:

y
q
i = zεq

∑
j∈G

[Rqj ]iδ
q
j

(Rqj +X
q
j diag(γ))Σe−Rqj αS

2

σqG,j(α,γ)
(7.8)

yvi = zεv
∑
j∈N

[Rvj ]iµj
(Rvj+X

v
j diag(γ))Σe−RvjαS

2

σvj(α,γ)
(7.9)

y�i = 2
∑
jk∈L

[R�jk]iζ
�
ij

(R�jk+X
�
jk diag(γ))Σe−R�jkαS

2

σ�jk(α,γ)
, (7.10)

where � = fp, fq and δqj = δ
q,+
j + δq,−

j , µj = µ+j + µ−j , and ζ�ij =

zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij . Terms σqG,j(α,γ),σvj(α,γ), σfpjk(α,γ),

σfqjk
(α,γ) denote the standard deviations of reactive power at node j, voltage

at node j, active power flow on line jk and reactive power flow on line jk,
respectively, and [·]i denotes the i-th element of a vector.

Proof. The first order optimality conditions of (7.1) for pG,i, qG,i, αi,
f
p
ij, f

q
ij and auxiliary variables are:

(7.5a), (7.5b), (7.11b) and (7.11c)

(αi) : χ+ zεpS(δ
p,+
i + δp,−

i ) +
∑
j∈G

ν
q
j [R

q
j ]i +

∑
j∈N

νvj [R
v
j ]i

+
∑
jk∈L

νf
p

jk[R
fp

jk]i +
∑
jk∈L

νf
q

jk[R
fq

jk]i =
αi
bi
S2

i ∈ G (7.11a)
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(tqi ) : zεp(δ
q,+
i + δq,−

i ) − ζqi = 0 i ∈ G (7.11b)

(ρqi ) : ζ
q
i

(Rqi − ρ
q
i e
> +Xqi diag(γ))Σe∥∥(Rqi − ρqi e> +Xqi diag(γ))Σ1/2

∥∥
2

− νqi = 0

i ∈ G (7.11c)

(ρvi ) : ζvi
(Rvi − ρ

v
i e
> +Xvi diag(γ))Σe∥∥(Rvi − ρvi e> +Xvi diag(γ))Σ1/2

∥∥
2

− νvi = 0

i ∈ N (7.11d)

(tvi ) : zεv(µ
+
i + µ−i ) − ζ

v
i = 0 i ∈ N (7.11e)

(fpij) : βf
p

ij − ξ
fp,+
ij + ξp,−

ij = 0 ij ∈ L (7.11f)

(fqij) : β
q
ij − ξ

fq,+
ij + ξf

q,−
ij = 0 ij ∈ L (7.11g)

(ρ�ij) : ζvi
(R�ij − ρ

�
ije
> +X�ij diag(γ))Σe∥∥∥(R�ij − ρvi e> +X�ij diag(γ))Σ1/2

∥∥∥
2

− ν�ij = 0

ij ∈ L, � = fp, fq (7.11h)

(a�ij) : 2ηija
�
ij − (ξ�,+ij + ξ�,−ij ) − ξ�,0ij = 0

ij ∈ L, � = fp, fq (7.11i)

(t�ij) : zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − ζ�ij = 0

ij ∈ L, � = fp, fq (7.11j)

The result (i) follows directly from the proof of Proposition 7.1. The
result (ii) follows from (7.11a) by eliminating αi using (7.1d). Note
that terms νqi , νvi , νf

p

ij , νf
q

ij are given by (7.11c), (7.11d) and (7.11h).
Further, tqi = σqG,i(α,γ), if ζqi > 0 as per (7.1i), tvi = σvj(α,γ), if
ζvi > 0 as per (7.1m) and t�ij = σ�jk(α,γ), if ζ�ij > 0 as per (7.1v) for
� = fp, fq. Thus, for any ζqi , ζvi , ζf

p

ij , ζf
q

ij = 0 the dependency on the
standard deviation would disappear. Finally, terms ζqi , ζvi , ζf

p

ij , ζf
q

ij are
given by (7.11b), (7.11e) and (7.11j).

Similar to the result of Proposition 7.1, prices λpi and λ
q
i do not

explicitly depend on uncertainty and risk parameters. On the other
hand, relative to (7.6), balancing reserve price χ depends on addi-
tional terms yqi , yvi , yf

p

i , yf
q

i , see (7.7), that relate the balancing reserve
provided by each generator at node i to the risk of reactive power and
voltage limits violation at every node j ∈ N and to the risk of power
flow violations on every line jk ∈ L. This risk awareness is not part of
the generator decisions, which are only driven by its own production
limits and cost, as indicated in (7.7). As a result of this incomplete-
ness, given system-wide balancing price χ, generators may elect for
balancing participation factors, which are sub-optimal from the sys-
tem perspective. This can be overcome either by further completing
the market in terms of transmission and voltage prices as proposed
in [193], or by augmenting the system-wide balancing price to reflect
location-specific constraints, e.g. χ̃i := χ+ y

q
i + y

v
i + y

fp

i + yf
q

i .
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7.4 variance-aware pricing

The risk-aware results of the EQV-CC in (7.1) yield solutions with a
high variability (variance) of system state variables, which has been
shown to complicate real-time operations, [142], [195]. The variances
of reactive power generation, voltage magnitudes, and active and
reactive flows can directly be computed from the standard devia-
tions related to tqi , tvi , tf

p

ij , tf
q

ij , respectively. We introduce the metric
V(tqi , tvi , tf

p

i , tf
q

i ) that models a connection between the variances and
system cost in the following variance-aware formulation:

VA-CC : min
pG,qG
v,α,θ

∑
i∈N

ci(pG,i) +
∑
i∈N

α2i
bi
S2+V(tqi , tvi , tf

p

ij , tf
q

ij )

s.t. (7.1b)–(7.1w). (7.12)

Specifically, metric V(·) penalizes the variance of state variables and,
thus, it can be used to trade-off the overall system variance and the
expected operating cost in the system as discussed in [142]. We define
metric V(·) as:

V(tqi , tvi , tf
p

ij , tf
q

ij ) =
∑
i∈G

(Ψqi (t
q
i )
2) +

∑
i∈N

Ψvi (t
v
i )
2

+
∑
ij∈L

(Ψf
p

ij (t
fp

ij )
2 +Ψf

q

i (tf
q

ij )
2),

(7.13)

where Ψqi , Ψvi , Ψf
p

ij , Ψf
q

ij are variance penalty factors in the units of
[$/MVAr2], [$/V2], [$/MW2] and [$/MVAr2], respectively. Note that active
power standard deviation tpi is already controlled by the generation
cost and the constraints on αi.

Proposition 7.4. Consider the VA-CC in (7.12). Let λpi , λqi be dual multi-
pliers of the nodal active and reactive power balance at node i as in (7.1b).
Further, let χ be the dual multiplier of the balancing adequacy constraint in
(7.1d). Then (i) λpi and λqi are given by (7.3) and (7.4) and (ii) χ is given
as:

χ=
1∑
i∈Gbi

(
S2+zεS

∑
i∈G

bi(δ
+
i +δ

−
i ) +
∑
i∈G

bi(y
q
i +y

v
i+y

fp+yf
q

)
)

, (7.14)

where:

y
q
i =
∑
j∈G

[Rqj ]iζ
q
j

(Rqj +X
q
j diag(γ))Σe−Rqj αS

2

σqG,j(α,γ)
(7.15)

yvi =
∑
j∈N

[Rvj ]iζ
v
j

(Rvj+X
v
j diag(γ))Σe−RvjαS

2

σvj(α,γ)
(7.16)

y�i = 2
∑
jk∈L

[R�jk]iζ
�
ij

(R�jk+X
�
jk diag(γ))Σe−R�jkαS

2

σ�jk(α,γ)
(7.17)



7.5 illustrative case study 123

ζ
q
j = zεq(δ

q,+
j + δq,−

j ) − 2σqGj (α,γ)Ψqj (7.18)

ζvj = zεv(µ
+
j + µ−j ) − 2σvj(α,γ)Ψvj (7.19)

ζ�jk = zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − 2σ�jk(α,γ)Ψ�j (7.20)

where � = fp, fq.

Proof. The first-order optimality conditions of (7.12) for pG,i, qG,i, αi,
f
p
ij, f

q
ij and auxiliary variables are:

(7.5a), (7.5b), (7.11c), (7.11d) and (7.11f)–(7.11i)

(αi) : zεpS(δ
p,+
i + δp,−

i ) + χ+
∑
j∈G

ν
q
j [R

q
j ]i

+
∑
j∈N

νvj [R
v
j ]i +

∑
jk∈L

ν�jk[R
�
jk]i = (

1

bi
+ 2Ψpi )αiS

2

i ∈ G, � = fp, fq (7.21a)

(tqi ) : zεp(δ
q,+
i + δq,−

i ) − ζqi = 2tqi Ψ
q
i i ∈ G (7.21b)

(tvi ) : zεv(µ
+
i + µ−i ) − ζ

v
i = 2t

v
iΨ
v
i i ∈ N (7.21c)

(t�ij) : zεf/2.5(ξ
�,+
ij + ξ�,−ij ) + zεf/5ξ

�,0
ij − ζ�ij = 2t

�
ijΨ
�
ij

ij ∈ L, � = fp, fq (7.21d)

The result (i) follows directly from the proof of Proposition 7.1. The
result (ii) follows from re-arranging (7.21a) using (7.1d) to eliminate
αi. Note that terms νqi , νvi , νf

p

ij , νf
q

ij are given by (7.11c), (7.11d) and
(7.11h) and terms (7.18)–(7.20) follow from (7.21b)–(7.21d). Similarly
to the proof of Proposition 7.3, tvi = σvj(α,γ), if ζvi > 0 as per (7.1m),
tf
p

ij = σfpjk(α,γ), if ζf
p

ij > 0 as per (7.1m), and tf
q

ij = σfpjk(α,γ), if
ζf
q

ij > 0 as per (7.1v).

Relative to the results of Proposition 7.3, terms yqi , yvi , yf
p

i , yf
q

i

now include an inherent trade-off between the risk of limit viola-
tion and the absolute standard deviations weighted by penalty fac-
tors Ψpi , Ψqi , Ψvi , Ψf

p

ij , Ψf
q

ij , see (7.18)–(7.20). Since dual multipliers
ζ
q
j , ζvj , ζf

p

jk, ζf
q

jk must be non-negative by definition, the scarcity rents
of reactive power δq,+

j , δq,−
j , voltage magnitude µ+j ,µ−j , active power

flows ξf
p,+
ij , ξp,−

ij , ξf
p,0
ij and reactive power flows ξf

q,+
ij , ξf

q,−
ij , ξf

q,0
ij and

risk parameters zεp , zεv , zεf set an upper bound to the standard devi-
ations σpG,j ,σvj ,σfpjk ,σfqjk weighted by the penalty factors.

7.5 illustrative case study

Table 7.1 compares the results of the deterministic, GEN-CC, EQV-
CC and VA-CC cases for different values of ε and Ψ. As expected,
the objective value and expected generation cost increase as we intro-
duce additional chance constraints and increase the value of Ψ, thus
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internalizing the cost of re-dispatch to ensure larger security margins
and lower variance of state variables. Similarly to the results in [142],
which uses DC power flow assumptions, increasing variance penalty
factor Ψ does not significantly raise the expected generation cost. This
observation suggests that this reduction in state variable variances is
achieved by adjustments to those variables, which are not limited
by binding constraints in the optimal solution. In other words, this
result shows that the variance of variables related to non-binding con-
straints can be controlled without significantly affecting the optimal
values of other variables. Note that the variance of variables related
to binding chance constraints is a priori controlled by the defined vio-
lation tolerance of these constraints.

Also, increasing conservatism of the model increases system-wide
balancing reserve price χ for both values of ε. For example, in the
GEN-CC, the value of χ is only driven by chance constraints on power
output limits of generators, as per Proposition 7.2, while the EQV-CC
and VA-CC introduce additional components (e.g. reactive power,
voltage and flow variances) to price χ as per Propositions 7.3 and
7.4. Location-specific prices λpi and λqi for all network nodes are dis-
played in Fig. 7.1a), while Figs. 7.1b)–c) map the relative difference
between λpi for the VA-CC case with Ψ = 100 and ε = 0.01 and the
deterministic case. At the majority of nodes, prices λpi (indicated by
the box-plots in Fig. 7.1a) remain within 32–38 $/MWh. Note that
unlike χ, which significantly increases for more conservative models,
prices for λpi and λqi do not vary as much as conservatism increases.
This corresponds to our findings in Propositions 7.1–7.4, which show
that active and reactive power prices do not explicitly depend on the
uncertainty and risk parameters. However, at some nodes, prices λpi
and λ

q
i in the GEN-CC and VA-CC cases exhibit larger deviations,

e.g. see λpi at nodes 20 and 23, which are also in proximity of wind
farms, as shown in Fig. 7.1c). A resulting high flow variance on the
line between nodes 19 and 23 causes price differentiation at nodes
19, 20, 21 and 23, 24, 25.

7.5.1 Analysis of Variance of State Variables

Table 7.1 shows how the aggregated variance of state variables∑
i σ
2
qG,i

,
∑
i σ
2
vi

,
∑
i σ
2
f
p
ij

,
∑
i σ
2
f
q
ij

change relative to the EQV-CC case

as penalty Ψ increases. Even if Ψ is set to a small value, the vari-
ance of state variables reduce significantly, without a large increase
in the objective function, expected generation cost, and prices λpi and
λ
q
i . Furthermore, as the value of ε increases, the relative reduction in

variances of all state variables slightly reduces. The effect of variance
penalty Ψ on prices is two-fold. First, it does not affect prices λpi and
λ
q
i relative to the EQV-CC case. Second, system-wide balancing price
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χ, which internalizes the variance penalties as per Proposition 7.4,
increases with penalty Ψ.

7.6 conclusion

This chapter described an approach to internalize RES stochasticity
and risk parameters in electricity prices. Using SOC duality, these risk-
and variance-aware prices are derived from a chance-constrained AC-
OPF and are itemized in terms of active and reactive power, voltage
support and power flow components. We proved that active and
reactive power prices do not explicitly depend on uncertainty and risk
parameters, while expressions for balancing reserve prices explicitly
include these parameters. Further, introducing variance penalties on
the system state variables has been shown to internalize the trade-off
between variance, risk and system cost at a modest increase in the
expected operating cost. The results have been demonstrated and
analyzed on the modified IEEE 118-node testbed
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Figure 7.1: (a) Active and reactive power prices λpi and λqi for the deterministic, GEN-CC and EQV-CC cases and VA-CC with Ψ = 100 for risk level
ε = 0.01. The orange line within the blue box represents the median value, the left and right edges of the box represent the first and third
quartiles and the outliers are plotted as circles. (b) Difference of active power prices λpi in the VA-CC (Ψ = 100) relative to the deterministic
case (in %). (c) Magnification of the area indicated by the doted rectangle in (b).





8
R I S K - C O M P L E T E C O O R D I N AT I O N

This chapter extends the chance-constrained electricity market of [P3],
[P4], [9] as discussed in previous Chapters 6 and 7, to enable risk-
trading. For this purpose, we derive a risk-averse market-clearing
model and introduce a financial security product modeled as an
Arrow-Debreu Security (ADS) that can be traded among market par-
ticipants. Further, the probability space of underlying uncertainty is
discretized in a finite number of outcomes, which makes it possible
to design practical risk contracts and to produce energy, balancing
reserve and risk prices. Notably, although risk contracts are discrete,
the model preserves the continuity of chance constraints. The case
study illustrates the usefulness of the proposed risk-averse chance-
constrained electricity market with risk trading.

The contents of this chapter have been published in 2020 as the arti-
cle entitled “Risk trading in a chance-constrained stochastic electricity
market” in the IEEE Control System Letters, [P5]. For this dissertation,
the original article has been moderately adapted to ensure unified
notation and connections to other chapters.

8.1 introduction

Uncertain RES challenge the efficiency of existing wholesale electricity
markets, which still lack risk-hedging financial instruments, [117]. As
a result, electricity markets are incomplete with respect to uncertainty
and risk, i.e. they do not provide market participants with a mecha-
nism to secure their positions relative to all probable future states of
the system. The CC-OPF-based electricity market design, as discussed
in previous Chapters 6 and 7 and in [9], internalizes the RES uncer-
tainty and produces uncertainty-aware electricity prices that support
welfare efficiency, revenue adequacy and cost recovery. However, the
previous designs assume (i) risk-neutrality and (ii) a single common
belief on the system uncertainty. In reality, market participants are
likely to trade (i) in a risk-averse manner and (ii) with different uncer-
tainty beliefs. Thus, decisions are more conservative and lead to less
efficient market outcomes, if there is no opportunity to compensate
the risk of uncertain costs with financial securities, [129].

Although common in the fields of stochastic optimization and fi-
nance, [81], the notion of risk aversion has only recently gained atten-
tion in power system operations and electricity markets. For example,
the work in [196] developed risk-averse control strategies for decen-
tralized generation resources and [121] explored the effects of risk-

129
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averse electricity producers in a two-stage market equilibrium. How-
ever, while hedging uncertain cost against risk using the conditional-
value-at-risk (CVaR), [121], [196] do not consider risk trading. On the
other hand, building on the theoretical groundwork [129], [130], the
work in [131] proposes a risk-complete, multi-stage, scenario-based
stochastic energy market by introducing risk-trading via ADS. This
risk completeness, i.e. risk trading via financial instruments parallel
to all other traded assets and services, provably enabled the existence
of a risk-averse competitive equilibrium, if all market participants are
endowed with a coherent risk measure. In [197] the results from [131]
are applied to a two-stage stochastic electricity market, showing that a
risk-averse equilibrium might not be unique. In line with [131], [197],
the work in [132] demonstrates that different risk perceptions of mar-
ket participants may encourage them to act strategically, thus causing
suboptimal market outcomes, which can be avoided in risk-complete
electricity markets.

Departing from scenario-based stochastic programming used in
market designs in [43], [73], [121], [124], [131], [197], this chapter
explores risk trading via ADS in the chance-constrained electricity
market proposed in [P3], [P4], [9], [127]. Unlike data-demanding
scenario-based approaches, chance constraints only require statisti-
cal moments to internalize uncertainty in the market design using
continuous probability distributions. Therefore, we first develop a
general risk-complete chance-constrained electricity market with con-
tinuous, infinite-dimensional ADS. Second, we show that ADS can
be discretized to enable practical risk contracts for a given set of un-
certain outcomes. Finally, this chapter analyzes risk-averse market
outcomes and investigates the effects of risk trading on market prices.

8.2 chance-constrained electricity market

Consider a centrally coordinated dispatch based on a CC-OPF formula-
tion that we call chance-constrained electricity market. To better high-
light relationships between probabilistic constraints and the effects of
risk-averse objectives, this chapter will repeat a few necessary formu-
lations to improve clarity. For detailed derivations of the CC-OPF see
Chapter 3.

The market operator solves:

min
pG,i,αi

F0

[∑
i∈G

ci(pG,i(ω))
]

(8.1a)

s.t. pU,i(ωi) = pU,i +ωi ∀i ∈ U (8.1b)

pG,i(ω) = pG,i −α
>
i ω ∀i ∈ G (8.1c)

(δ+i ) : P[pG,i(ω) 6 pmax
G,i ] > 1− εp ∀i ∈ G (8.1d)

(δ−i ) : P[pG,i(ω) > pmin
G,i ] > 1− εp ∀i ∈ G (8.1e)

(θ) : P[F(pG(ω),pU(ω),pD) ∈ F] > 1− εf (8.1f)
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(λi) : pG,i + pU,i + pi(F) = pD,i ∀i ∈ N (8.1g)

(χu) :
∑
i∈G

αi,u = 1 ∀u ∈ U, (8.1h)

where (8.1a) minimizes the system operating cost evaluated by mea-
sure F0 (e.g. expectation, if F0 ≡ E) over the random vector of RES

forecast errors ω = [ωi, i ∈ U] and given the cost function of each
generator ci(pG,i). Eq. (8.1b) models the uncertain RES power out-
put pU,i(ωi) at node i as the RES forecast pU,i plus the RES forecast
error ωi. Eq. (8.1c) defines the power output of conventional genera-
tors under uncertainty pG,i(ω) using an affine control policy, where
pG,i and αi = [0 6 αi,u 6 1,u ∈ U] are decisions for the sched-
uled power output and the vector of participation factors for balanc-
ing reserve of generator i. Here αi,u denotes the participation factor
of generator i in response to the RES forecast error at node u ∈ U.
Chance constraints (8.1d) and (8.1e) ensure that the power output
of conventional generator i under uncertainty does not exceed the
upper or lower limits pmax

G,i and pmin
G,i with a probability of 1− εp. Sim-

ilarly, (8.1f) ensures that DC power flows computed using function
F(pG,i(ω),pU,i(ω),pD,i), which maps net nodal injections to power
flows, are contained in a convex set of feasible power flows given
by F with a probability of 1− εf. Finally, (8.1g) is the nodal power
balance constraint given the nodal demand and power flow injections
pD,i and pi(F). Eq. (8.1h) ensures that the procured balancing reserve
is sufficient to mitigate ω. Greek letters in parentheses denote dual
multipliers.

8.2.1 Deterministic Reformulation

Using the quadratic cost model from (3.4):

ci(pG,i(ω)) = c2i(pG,i(ω))2 + c1ipG,i(ω) + c0i,

where c2i, c1i, c0i are cost coefficients, and using F0 ≡ E and ω ∼

N(0,Σ), where Σ is the covariance matrix of ω, (8.1) has a tractable
convex (conic) reformulation, see Chapter 3:

min
pG,i,αi
spG,i

∑
i∈G

ci(gi) + c2i

∥∥∥α>i Σ1/2∥∥∥2
2

(8.2a)

s.t. (ζi) : spG,i >
∥∥∥α>i Σ1/2∥∥∥

2
∀i ∈ G (8.2b)

(δ+i ) : pG,i + zεpspG,i 6 p
max
G,i ∀i ∈ G (8.2c)

(δii) : − pG,i + zεpspG,i 6 −pmin
G,i ∀i ∈ G (8.2d)

(θ) : F̃εf(pG,pU,pD,α) 6 0 (8.2e)

(λi) : pG,i + pU,i + pi(F̃εf) = pD,i ∀i ∈ N, (8.2f)

(χu) :
∑
i∈G

αi,u = 1 ∀u ∈ U, (8.2g)
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where zε = Φ−1(1− ε) is the quantile function of the standard nor-
mal distribution and spG,i is an auxiliary decision variable modeling
the standard deviation of pG,i(ω). As explained in [P3], the reserve
provided by each producer can then be computed as zεpspG,i , where
spG,i depends on participation factors αi. (Note that this expres-
sion holds even for more general distribution assumptions on ω, see
[9]). Function F̃εf(·) in (8.2e) maps the decision variables, parameters,
statistical characteristics of ω and security threshold εf into a vector
of power flows with security margins so that (8.2e) is equivalent to
chance constraint (8.1f), see e.g. Section 3.3.

8.2.2 Equilibrium Formulation

The optimization problem in (8.1) and (8.2) represents a risk-neutral
market operator and has been proven to yield energy and balancing
reserve prices λi and χu, which solve the following equilibrium, [P3],
[P4], [9], [127]:maxpG,i,αi

spG,i

λipG,i + χ
>αi − E[ci(pG,i(ω))]

s.t. (8.2b)–(8.2d)

 , ∀i ∈ G (8.3a)

(8.2e)–(8.2g) (8.3b)

where (8.3a) is a profit maximization solved by each conventional
generator (producer) and (8.3b) are the market-clearing conditions.
As shown in Chapters 6 and 7, λi and χu can be interpreted as equi-
librium energy and reserve prices.

8.3 risk averse market

The optimization in (8.3a) solved by each producer is risk neutral
because it assumes average (expected) outcomes of random ω. In
practice, however, producers are likely to hedge against the risk of
uncertain costs based on their risk perception. This section consid-
ers risk-averse profit maximizing producers endowed with a risk mea-
sure Fi.

8.3.1 Coherent Measures of Risk

Intuitively, a risk measure evaluates an uncertain outcome Z in terms
of an equivalent deterministic outcome F[Z] so that a producer en-
dowed with risk measure F is indifferent between accepting uncer-
tain Z or its certainty equivalent F[Z]. Additionally, a risk measure is
called coherent if, [81], [90]:

(i) F[c] = c, i.e. the certainty equivalent of a deterministic constant
c ∈ R is equal to the constant,
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(ii) F[cZ] = cF[Z], i.e. an uncertain outcome Z scaled by some posi-
tive constant c > 0 is equal to the scaled certainty equivalent,

(iii) F[(1− c)Z + cY] 6 (1− c)F[Z] + cF[Y] for c ∈ [0, 1], i.e. the risk
measure is convex, and

(iv) F[Z] 6 F[Y] if Z 4 Y, i.e. the risk measure is monotone.

For example, the expectation operator E is a coherent measure of
risk, [81], but neglects the volatility of outcomes, and is therefore
associated with risk-neutrality.

Any coherent risk measure can be expressed as, [81]:

F[Z] = sup
P∈P

EP[Z] (8.4)

where P denotes the risk set (risk envelope) of F, i.e. a compact con-
vex set of probability measures, and EP is the expectation over the
probability measure P. Risk set P uniquely defines F and can be
structured such that supP∈P EP[Z] is identical to specific risk mea-
sures, e.g. CVaR, [81].

Remark 8.1. Defining a risk measure in terms of a worst-case proba-
bility distribution as in (8.4) is structurally identical to distributionally
robust optimization that can be applied to chance constraints (8.1d)–
(8.1f), see e.g. [P2], [P3], [9] and Chapters 4 and 5. This work, how-
ever, focuses on the evaluation of the objective, i.e. the reformulation
of constraints in (8.2c)–(8.2e) remains unchanged.

8.3.2 Risk-Averse Profit Maximization

To derive a risk-averse modification of (8.2), we define a risk set us-
ing a moment ambiguity set, which generally yields tractable convex
optimization problems, [154]. Thus, the risk set of each producer i is:

Pi = {P(ω) ∈ P | EP[ω] = 0, VarP[ω] ∈ Si}, (8.5)

where P is the set of probability distributions and Si = {Σ1, ...,ΣK} is
the set of K covariance matrices (Σ1, ...,ΣK), where K is the same for
all producers. Set Si, and thus set Pi, captures the belief of producers
on the accuracy of RES forecast data and forecasting methods. Given
that all producers are likely to have access to similar data providers,
we make the assumption that risk sets P̃i, i ∈ G are non-disjoint, i.e.⋂
i∈G P̃i 6= ∅, [130], [131]. Notably, Pi is a set of continuous distri-

butions as opposed to discrete polyhedral probability measures in
[131], [197], which rely on a set of pre-described scenarios. Using
(8.4) and (8.5) yields:

min
pG,i,αi

sup
P∈Pi

EP[ci(pG,i(ω))]

= min
pG,i,αi

ci(pG,i) + sup
k=1,...,K

c2i

∥∥∥α>i Σ1/2k ∥∥∥2
2

.
(8.6)
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Although Pi as defined in (8.5) is non-convex, solving (8.6) is equiv-
alent to solving the following problem with convex polyhedral set
S̃i = conv(Si), [198, Section 6.4.2]:

min
pG,i,αi

ci(pG,i) + sup
Σk∈S̃i

c2i

∥∥∥α>i Σ1/2k ∥∥∥2
2

(8.7)

and we can define:

P̃i = {P(ω) ∈ P | EP[ω] = 0, VarP[ω] ∈ S̃i} (8.8)

as the convex counterpart of Pi, which yields the following coherent
risk measure:

Fi [ci(pG,i(ω))] = sup
P∈P̃i

EP[ci(pG,i(ω))]. (8.9)

Using the epigraph form of (8.7), the cost minimization in (8.2) can
be recast as the following risk-averse modification:

min
pG,i,αi
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (8.10a)

s.t. (8.2b)–(8.2g) (8.10b)

(ηi,k) : ti > c2i
∥∥∥α>i Σ1/2k ∥∥∥2

2
∀Σk ∈ Si, ∀i. (8.10c)

Similarly, the risk-averse modification of (8.3a) follows as:

max
pG,i,αi
spG,i ,ti

λipG,i + χ
>αi − ci(pG,i) − ti (8.11a)

s.t. (8.2b)–(8.2d) and (8.10c). (8.11b)

Note that Σ in (8.2b) remains unchanged, see Remark 8.1.

Remark 8.2. Unlike in (8.3a), the risk-averse profit maximization in
(8.11) allows different producers to have different perceptions of the
system uncertainty, which can be modeled as different risk attitudes
drawn from producer-specific set Pi.

8.4 risk trading

If producer i is endowed with coherent risk measure Fi given by
risk set Pi and seeks to maximizes its risk adjusted profit as in (8.11),
its decision will be more conservative in the absence of risk-trading
opportunities. Thus, a risk-incomplete market as in (8.10) will be
less efficient and suffer welfare losses. This section describes an
approach to complete the chance-constrained market with respect to
risk by introducing ADS trading.
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8.4.1 Continuous Risk Trading

ADS as introduced in [199] is a common security contract that depends
on the outcome of an uncertain asset, which in the case of the chance-
constrained electricity market in (8.10) is the RES forecast error given
by ω. Thus, a buyer of the contract pays price µ(ω) to receive a
payment of 1 for a pre-defined realization of ω. Hence, if producer
i seeks to receive a payment of ai(ω) for all possible ω, it pays in
advance:

πai =

∫
Ω

µ(ω)ai(ω)dω (8.12)

where Ω is the space of all possible outcomes of ω. If ai(ω) 6 0,
then producer i sells ADS (i.e. provides security to the system) and
receives the payment of πai 6 0. Otherwise, if ai(ω) > 0, producer
i purchases ADS and pays πai > 0. Further, the market must ensure
revenue adequacy, i.e. that the amount of ADS purchased and sold
match:

(µ(ω)) :
∑
i∈G

ai(ω) = 0 ∀ω ∈ Ω. (8.13)

Given the risk trading model in (8.12) and (8.13), each profit-
maximizing producer can be modeled as follows:

max
pG,i,αi,ai(ω)
spG,i ,ti

λipG,i + χ
>αi − ti − πai (8.14a)

s.t. (8.2b)–(8.2d) (8.14b)

(ηi,k) : ti>EPk [ci(pG,i(ω))]−EPk [ai(ω)], ∀Pk∈Pi,
(8.14c)

where πai reflects the additional cost or revenue due to risk trad-
ing, as given in (8.12), and EPk [ai(ω)] in (8.14c) is the expected ADS

cost or revenue over probability measure Pk. Given (8.13) and (8.14),
extending the risk-averse market-clearing in (8.10) with risk trading
yields:

min
pG,i,αi,ai(ω)
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (8.15a)

s.t. (8.2b)–(8.2g), (8.13) and (8.14c), (8.15b)

where (8.13) enforces the market-clearing condition yielding dual
multiplier µ(ω). Using (8.15) and under the assumption that set F

is sufficiently large to accommodate injections pG(ω), pU(ω), pD
without causing network congestion1 (i.e. energy prices are uniform
λ = λi), we prove:

1 This assumption simplifies derivations, but the result holds for the congested case if
transmission assets and services are priced [192].
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Proposition 8.1. Let λ, χ, and µ(ω) be equilibrium energy, balancing, and
risk prices, respectively, so that {λi = λ;χu;µ(ω);pG,i,∀i ∈ G;αi,∀i ∈
G;ai(ω),∀i ∈ G} solves (8.15). Then µ(ω) can be interpreted as a proba-
bility measure that solves a risk-neutral equivalent of the risk-averse profit
maximization with ADS trading.

Proof. The market-clearing problem in (8.15) remains convex as long
as ai(ω) is convex in ω. Therefore, KKT conditions can be invoked.
The Lagrangian function of the profit maximization of each producer
in (8.14) can be written as:

Li = λpG,i + χ
>αi − ti − πai − ζi(

∥∥∥α>i Σ1/2∥∥∥
2
− spG,i)

− δ+i (pG,i+zεspG,i−p
max
G,i )−δ

−
i (−pG,i+zεspG,i+p

min
G,i )

−

K∑
k=1

ηi,k(EPk [ci(pG,i(ω)) − ai(ω)] − ti) (8.16)

Hence, the resulting optimality conditions for ti, ai(ω) are:

∂Li
∂ti

= −1+

K∑
k=1

ηi,k = 0 ⇒
K∑
k=1

ηi,k = 1 (8.17)

∂Li
∂ai(ω)

= −µ(ω) +

K∑
k=1

ηi,kf(ω,σk) = 0

⇒ µ(ω) =

K∑
k=1

ηi,kf(ω,Σk),

(8.18)

where f(ω,Σk) denotes the probability density function of a multi-
variate, zero-mean distribution with covariance Σk. Note that for the
derivation of (8.18) we used:

∂πai
ai(ω)

=
∂

∂ai(ω)

∫
Ω

µ(ω)ai(ω)dω = µ(ω),

(8.19)
∂

∂ai(ω)
EPk [ai(ω)]=

∂

ai(ω)

∫
Ω

ai(ω)f(ω,Σk)dω =f(ω,Σk).

(8.20)

Conditions (8.17) and (8.18) lead to two relevant observations:

(O1) Dual multiplier µ(ω) in (8.13) is a probability measure as it is
the weighted average of K probability density functions with
zero means and covariance matrices Σ1, ...,Σk. In other words,
random Z(ω) ∼ µ(ω) has the expected value of Eµ[Z(ω)] = 0

and the variance of Varµ[Z(ω)] =
∑K
k=1 ηi,kΣk.

(O2) Since S̃i is a convex set, condition (8.17) ensures that∑K
i=1 ηi,kΣk ∈ S̃i and thus µ(ω) ∈ P̃i.
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The set of optimal decisions {λ;χu;µ(ω);pG,i,∀i ∈ G;αi, ∀i ∈
G;ai(ω), ∀i ∈ G} maximize Li given in (8.16). Using observation O1,
the fifth term in (8.16) recasts as:

K∑
k=1

ηi,k(EPk [ci(pG,i(ω)) − ai(ω)])

=

K∑
k=1

ηi,k

∫
Ω

[ci(pG,i(ω)) − ai(ω)]f(ω,Σk)dω

=

∫
Ω

[ci(pG,i(ω)) − ai(ω)]

K∑
k=1

ηi,kf(ω,Σk)dω (8.21)

=

∫
Ω

[ci(pG,i(ω)) − ai(ω)]µ(ω)dω

= Eµ[ci(pG,i(ω))] − πai .

Substituting (8.21) in (8.16) leads to:

Li = pG,i + χαi − Eµ[ci(pG,i(ω))] − yδi − y
ζ
i , (8.22)

where yδi , yζi denote the terms related to duals δi, ζi in (8.16). Hence,
(8.22) is a risk-neutral equivalent, evaluated with respect to probabil-
ity measure µ(ω), of the risk-averse profit of producer i participating
in risk trading with ADS. �

Given Proposition 8.1, the optimization of individual producers in
(8.14) is related to the risk-averse chance-constrained electricity mar-
ket with ADS trading in (8.15):

Proposition 8.2. Let λ, χu, and µ(ω) be equilibrium energy, balanc-
ing, and risk prices so that {λi = λ;χu;µ(ω);pG,i,∀i ∈ G;αi,∀i ∈
G;ai(ω), ∀i ∈ G} solves problem (8.15). Given that

⋂
i∈G P̃i 6= ∅, then

these prices and allocations solve the risk-averse chance-constrained market
with risk trading with P̃0 =

⋂
i∈G P̃i and worst case probability measure

µ(ω).
Proof. Given the optimal solution for each producer, it follows from
the complementary slackness of (8.14c):

ηi,k(EPk [ci(pG,i(ω)) − ai(ω)] − ti) = 0. (8.23)

By summing (8.23) over all i and k, comparing with (8.21), and using
(8.13) to eliminate πai , we write:

∑
i∈G

ti =
∑
i∈G

K∑
k=1

ηi,k(EPk [ci(pG,i(ω)) − ai(ω)]

= Eµ

[∑
i∈G

ci(pG,i(ω)
]
. (8.24)

Also, since (8.14c) is a convex epigraph, we have

ti = max
P∈P̃i

EPk [ci(pG,i(ω)) − ai(ω)]. (8.25)
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Given (8.25), term
∑
i∈G ti in (8.24) can also be written as:∑

i∈G
ti =

∑
i∈G

max
Pk∈P̃i

EPk [ci(pG,i(ω)) − ai(ω)]

A
> max

P∈
⋂
i∈G P̃i

EP

[∑
i∈G

ci(pG,i(ω)) − ai(ω)
]

(8.26)

B
= max

P∈
⋂
i∈G P̃i

EP

[∑
i∈G

ci(pG,i(ω))
]
,

where transition A is due to the replacement of individual risk sets
Pi with the intersection of all risk sets P̃0 =

⋂
i∈G P̃i and transition

B is due to the market-clearing ADS condition in (8.13). Since µ(ω) ∈
P̃i,∀i ∈ G and P̃0 6= ∅, due to observation O2 above, (8.24) and (8.26)
yield:

Eµ

[∑
i∈G

ci(pG,i(ω))
]
= max

Pk∈P̃0
EPk

[∑
i∈G

ci(pG,i(ω))
]
, (8.27)

showing that µ(ω) is the worst-case probability measure for the risk-
averse market with risk trading. �

8.4.2 Discrete Risk Trading

Recall that Section 8.4.1 defines ADS as continuous over ω, which
leads to an infinite-dimensional problem in (8.15) and obstructs
tractable computations and designing practical risk contracts. To over-
come these caveats, the probability space of ω can be discretized to
consider contracts for discrete events. Hence, consider the system-
wide (aggregated) RES forecast error given as O = e>ω with mean
EPk [O] = 0 and variance VarPk [O] = e>Σke =: σ

2
k, where e is the vec-

tor of ones of appropriate dimensions. The probability space of O
can then be divided into W events w = 1, ...,W, where each event
is a closed interval given by Ww = [lw,uw] so that

⋃W
w=1Ww = R.

These intervals are sequential such that l1 = −∞, uW = ∞ and
uw = lw+1,w = 1, ...,W−1. Thus, the probability of each discrete
outcome is defined by Pk as:

Pw(σk) := Pk[O ∈Ww] = Pk[(O 6 uw)∩ (O > lw)]

=

∫uw
lw

f(x,σk)dx (8.28)

and can be pre-computed for all w = 1, ...,W and k = 1, ...,K. Using
the discrete space notation, (8.12) recasts as:

πai =

W∑
w=1

µwai,w, (8.29)
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where ai,w ∈ R. Next, using (8.28), the expected cost or payment
ai(ω) under Pk can be computed as:

EPk [ai(ω)] =

W∑
w=1

ai,wPw(σk). (8.30)

Finally, using (8.29) and (8.30) and the discrete-space equivalent of
(8.18), i.e. the optimality condition for ai,w, the discrete-space equiv-
alent of µ(ω) is computed as:

µw =

K∑
k=1

ηkPw(σk) =

K∑
k=1

ηi,k

∫uw
lw

f(x,σi,k)dx

=

∫uw
lw

K∑
k=1

ηi,kf(x,σi,k)dx ∀i ∈ G,

(8.31)

where σi,k =
∥∥∥e>Σ1/2k ∥∥∥

2
with Σk ∈ Si. Hence, due to (8.31), µw

retains the interpretation of µ(ω) from observation O1 of Propo-
sition 8.1. Indeed, a random variable with probability density

function
∑K
k=1 ηi,kf(x,σi,k) has variance

∥∥∥e>(∑Kk=1 ηi,kΣk)1/2∥∥∥2
2

=

e>(
∑K
k=1 ηkΣk)e, it follows that Varµ(O) = e>(

∑K
k=1 ηi,kΣk)e. Us-

ing this result and (8.28)–(8.31), a discrete modification of the risk-
averse chance-constrained electricity market with risk trading in
(8.15) is:

min
pG,i,αi,ai,w
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (8.32a)

s.t. (8.2b)–(8.2g) (8.32b)

(ηi,k) : ti> c2i
∥∥∥α>i Σ1/2k ∥∥∥2

2
+

W∑
w=1

ai,wPw (σi,k) ,

∀Σk ∈ Si, ∀i (8.32c)

(µw) :
∑
i∈G

ai,w = 0, ∀ w = 1, ...,W. (8.32d)

Since the discrete representation of ADS contracts in (8.32) is a special
case of the infinite-dimensional representation in (8.15), the results of
Propositions 8.1 and 8.2 hold for (8.32).

8.4.3 Price Analysis with Risk Trading

Using the risk-averse chance-constrained electricity market with dis-
crete risk trading in (8.32), this section analyzes resulting energy, bal-
ancing reserve and risk prices as follows:

Proposition 8.3. Consider the risk-averse chance-constrained market with
risk trading in (8.32). Let λi, χu and µw be the dual multipliers of the
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active power balance (8.2f), the reserve sufficiency constraint (8.2g) and the
ADS market-clearing constraint (8.32d). Then µw is given by (8.31) and

λi = 2c2ipG,i + ci1 + (δ+i − δ−i ) + ypG,i(θ) (8.33)

χu=
1

|G|

∑
i∈G

(
2c2iα

>
i [Σi]u+zεpδi

α>i [Σ]u
sG,i

+yαi,u(θ)

)
, (8.34)

where ypG,i(θ) := θ>
∂F̃εf
∂pG,i

, yαi,u(θ) := θ>
∂F̃εf
∂αi,u

, Σi := (
∑K
k=1 ηi,kΣk |

Σk ∈ Si), δi := δ+i + δ−i , [X]u is the vector of elements in the u-th column
of matrix X, and sG,i =

∥∥α>i Σ1/2∥∥2, i.e. the standard deviation of pG,i(ω).

Proof. Let L be the Lagrangian function of (8.32), its first-order opti-
mality conditions for pG,i, αi,u, spG,i and ai,w are:

∂L

∂pG,i
= 2c2ipG,i + ci1 + (δ+i − δ−i )

+ ypG,i(θ) − λi = 0, ∀i ∈ G

(8.35a)

∂L

∂αi,u
= 2c2iα

>
i [Σi]u + ζi

α>i [Σ]u∥∥α>i Σ1/2∥∥2
+ yαi,u(θ) − χu = 0, ∀i ∈ G, ∀u ∈ U

(8.35b)

∂L

∂spG,i

= −ζi + δ
+
i zεp + δ

−
i zεp = 0, ∀i ∈ G (8.35c)

∂L

∂ai,w
=

K∑
k=1

ηi,kPw(σk,i) − µw = 0 (8.35d)

Expressions (8.33) and (8.34) follow immediately from (8.35d) and
(8.35a), respectively. Expressing ζi from (8.35c) and summing over all
i ∈ G in (8.35b) yields (8.34). �

Notably, energy prices in (8.33) are driven by cost coefficients of
ci(·) and do not explicitly depend on random ω, risk set Pi and
tolerance to chance constraint violations εp. On the other hand, the
balancing reserve price in (8.33) depends on ω (via parameter Σ), Pi
(via parameter Σi) and εp. Finally, risk prices in (8.31) depends on
the degree of discretization W, which affects interval limits lw and
uw, and individual risk perception given by set Pi (via parameter
σi,k).

8.5 illustrative case study

We conduct a case study to illustrate some of the theoretical re-
sults of this chapter by comparing the ex ante outcomes of the
risk-averse chance-constrained electricity market without risk trad-
ing (“NO-RT”), as formulated in (8.10), and with risk trading (“RT”),
as formulated in (8.32). We construct a data set that includes five
conventional producers with parameters c1i = {10, 7, 7, 15, 17} $/MW,
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Table 8.1: Power Outputs and Balancing Participation Factors

αi,u in the RT case αi,u in the NO-RT case

pG,i u = 1 2 3 4 5 1 2 3 4 5

i = 1 26.04 0.09 0.18 0.26 0.34 0.21 0.19 0.19 0.23 0.31 0.24

2 10.00 0.41 0.30 0.40 0.10 0.17 0.39 0.26 0.32 0.10 0.25

3 10.00 0.31 0.28 0.06 0.33 0.31 0.37 0.27 0.12 0.28 0.23

4 15.70 0.01 0.14 0.14 0.12 0.26 0.04 0.15 0.18 0.14 0.20

5 13.36 0.18 0.10 0.15 0.11 0.06 0.02 0.13 0.15 0.17 0.08

χu – 1.24 1.54 0.72 0.69 1.31 0.91 1.47 1.31 1.34 1.11

(Indices i relate to producers, indices u relate to uncertain RES.)

c2i = 0.1c1i, ∀i ∈ G, pmax
G,i = {30, 10, 10, 25, 25}MW and pmin

G,i = 0,∀i ∈
G, and five undispatchable stochastic RES producers. The total system
demand is

∑
i∈N pD,i = 100MW and forecasted RES production is

pU,i = 5MW,∀i ∈ U. The risk sets Pi defined by set Si, see (8.5),
of the individual producers are constructed with K = 10 as follows.
Each producer i has a set Si of K − 1 covariance matrices that re-
flect their individual risk perception. We randomly generate these
sets with the standard deviation of ωi between 0 to 0.4pU,i and the
correlation between 0 to 0.5. Additionally, we assume there exists a
“common” covariance defined such that all ωi have a standard devi-
ation of 0.2pU,i and no correlation. This common covariance matrix
is added to all Si and can, for example, reflect information provided
by the market operator or some third-party forecast provider. We
create eight ADS events by discretizing the probability space of O in
eight intervals using breakpoints [−0.2,−0.1,−0.05, 0, 0.05, 0.1, 0.2], as
explained in Section 8.4.2 and shown on the x-axis of Fig. 8.1(a). The
code and data is available in [200].

For this data set, the RT case reduces the risk-adjusted system cost
by 0.2% relative to the NO-RT case. Notably, the energy cost compo-
nent (4,656.50 $) and energy prices (62.09 $) are the same in both cases,
but the balancing reserve cost component is reduced by 11 % (from
6.17 $ to 5.52 $). Similarly, generation levels pG,i remain unchanged
for both cases (see Table 8.1). On the other hand, the introduction
of ADS trading changes the balancing reserve provision (αi,u) and its
prices (χu), as shown in Table 8.1, which is influenced by different
risk beliefs of producers.

Fig. 8.1 summarizes the discrete events and resulting risk trades.
Each column in Fig. 8.1 reflects one event, numbered on the x-axis of
Fig. 8.1(b) and with the interval breakpoints shown on the x-axis of
Fig 8.1(a). ADS trading outcomes are itemized in Fig. 8.1(b), where
negative and positive values indicate ADS selling and purchasing pro-
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Figure 8.1: Risk trading results in the RT case: (a) itemizes the event prob-
abilities Pw(σi,k), see (8.28), drawn from all individual risk sets
(shown in thin gray lines) relative to the “common" distribution
(dashed green line) and the ADS prices µw (solid red line); (b)
itemizes the ADS trades, where negative (purple) values indicate
a producer selling ADS and positive (orange) values indicate a
producer buying ADS. The columns in both (a) and (b) reflect the
events with breakpoints indicated on the x-axis of (a) and event
numbers as indicated on the x-axis of (b).



8.6 conclusion 143

ducers, respectively. Due to the symmetry of the RES uncertainty
distributions, the ADS trading outcomes are also symmetric. Note
that producers 1 and 5 are security providers and producers 2-4 are
security takers. Specifically, in the NO-RT case, producer 5 expects
to attain a greater profit by providing less balancing reserve to RES

u = 1 than in the RT case. In other words, when producer 5 can
hedge its risk via ADS trade, it is incentivized to procure more balanc-
ing reserve for RES u = 1. The risk-aversion also affects the ADS prices
in Fig. 8.1(b) given by dual µw of the ADS market-clearing constraint
(8.13) for each event. As shown in Fig. 8.1(a), the values of risk prices
µw in Fig. 8.1(b), match the “common” event probabilities. That is,
µw is indeed a probability measure, as in Proposition 8.1, and cap-
tures the risk perception at the intersection of all risk sets P̃i, as in
Proposition 8.2.

8.6 conclusion

This chapter has developed a risk-averse modification of the chance-
constrained electricity market discussed in previous Chapters 6 and 7

by completing it with ADS-based risk trading. By discretizing the out-
come space of the system uncertainty, we formulated practical ADS
contracts that lead to a computationally tractable market-clearing op-
timization with risk trading. This optimization reduces the system op-
erating cost relative to the case with no risk trading and produces en-
ergy, balancing reserve and risk prices. In particular, both qualitative
and quantitative analyses indicate that system uncertainty and risk
parameters do not explicitly affect the energy prices, but explicitly
contribute to the formation of the balancing reserve and risk prices.
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C O N C L U S I O N A N D O U T L O O K

Realizing the necessity of modern power systems to host increasing
numbers of stochastic renewable and distributed energy resources,
this dissertation has emphasized the usefulness of risk-aware power
system control, dispatch and market-coordination. The proposed set
of methods enables system and market operators to internalize statis-
tical properties of uncertain injections from renewable energy sources
(RES) or distributed energy resources (DERs) into established decision
making tools to mitigate uncertainty-related risk. As a result, evalua-
tion of controllable generation, intermittent RES injection and reserve
capacity in the context of physical system constraints improves and,
thus, increases RES hosting capacity at a moderate increase of cost.
Applications of these methods for active distribution system oper-
ation, AC-complete transmission system dispatch and risk-complete
electricity markets have been studied.

9.1 summary

Specifically, we first derived tractable chance-constrained modifica-
tions of the optimal power flow (OPF) problem for transmission and
distribution systems (CC-OPF). Then we proposed a data-driven ap-
proach to immunize the CC-OPF against errors in the uncertainty
statistics using confidence bounds on the empirical moment estima-
tions. This distributionally-robust modification of the CC-OPF has
been applied to a distribution system with significant behind-the-
meter RES generation and controllable DERs and showed improved
robustness against out-of-sample uncertainty realizations. Extending
on the analyses of distribution system operation, we then proposed a
regression-based online-learning framework to co-optimize DER oper-
ation and incentive signals broadcast to flexible loads in a demand re-
sponse (DR) program. We highlighted that neglecting system physics
in DR price signals, as common in the related literature, may lead to
power flow and voltage violations that impede a safe system oper-
ation. The effectiveness of the learning algorithm has been proved
analytically and numerically via regret analyses.

Next, we used convex duality theory to obtain a risk-aware electric-
ity market clearing with efficient energy and reserve prices from the
CC-OPF formulation. We derived energy prices as distribution loca-
tional marginal prices (DLMPs) for low-voltage distribution networks
and as AC-complete locational marginal prices (LMPs) for high-voltage
transmission systems. Additionally, we showed that the CC-OPF for-
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mulations yield efficient prices for real-time balancing participation
and procuring the necessary reserve capacity. Qualitative and quan-
titative analyses demonstrated that energy prices are not explicitly
depending on system uncertainty. Reserve prices, on the other hand,
include terms related to forecast error statistics and risk parame-
ters. Additionally, these prices avoid a per-scenario trade-off by in-
ternalizing the continuous probability space of the underlying uncer-
tainty via moment information (variance). Therefore, cost recovery
and revenue adequacy can always be guaranteed. Finally, we pre-
sented a chance-constrained market-clearing with risk-averse market
participants using coherent risk metrics. Here, we showed that the
risk-averse market can retain an equilibrium if risk can be traded
among market participants via suitable financial products, i.e. Arrow-
Debreu Securitys (ADSs). A suitable discretization of the probability
space of the uncertain parameter enabled the design of practical con-
tracts and improved computational tractability.

9.2 research outlook

The contributions of this dissertation are constrained by some specific
modeling assumptions and the specific design of the studied prob-
lems. Future research may relax some of these constraints to unravel
new improvements and enable new or generalized applications. A
few potential pathways are outlined below.

energy storages Although energy storages (ESs) can be mod-
eled as controllable generators or DERs that participate in energy and
balancing reserve provisions, some features that are specific to ES ob-
struct a straight-forward implementation in the chance-constrained
framework. First, ES operative constraints are usually “hard”, i.e. they
do not allow any short-term violations, see discussion in Box 2 and
[148]. However, possibilities to include these constraints of ES into
future CC-OPF models may comprise (i) a mixed robust-risk-aware
framework that ensures ES compliance for all possible outcomes, e.g.
along the lines of [148], (ii) an explicit analysis of corrective actions in
case of a constraint violation along the lines of [147] or (iii) using im-
proved detailed models of ES operation to define optimal operation
set-points that may be violated for a short period of time. Option
(iii) may be the most promising, because detailed dynamic models of
power-electronic interfaced chemical ES suggest possibilities of short-
term and low-magnitude deviations from preferred states. For exam-
ple, [201] suggests that the technically short-term feasible charging
rate of certain battery system can be three to five times higher than
the preferred long-term rate. These observations may be sufficient
to enable a chance-constrained operational paradigm. Second, ES ex-
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hibit time-coupled constraints which raise some issues in the context
of CC-OPF as discussed below.

time-coupled constraints Random variables with inter-
temporal dependencies complicate an exact reformulation of the
CC-OPF problem. Such dependencies may occur as time-correlations
within the vector of uncertain parameters or time-coupled probabilis-
tic constraints, e.g. from ES or generator ramping. Notably, expand-
ing the variance-covariance matrix of the uncertain parameter vec-
tor to capture time-correlations may be possible using the formula-
tions presented in this work. However, this neglects the possibility
of time-to-time corrective actions after the outcome of the uncertainty
has been observed. These multiperiod decisions warrant the use of
methods from dynamic programming and model-predictive control.
While these are promising approaches to generalize CC-OPF calcula-
tions, they may obstruct analytical reformulations to analyze price
components and prove the existence of market equilibria.

financial products This dissertation studied risk trading and
financial risk hedging using generic ADSs. While this concept is useful
for the theoretic analyses of risk-averse markets, it does not have an
immediate real-world equivalent. Variance-based products, such as
variance swaps or a more general variance-based pricing theory, [202],
[203], may provide interesting pathways towards the implementation
of efficient real-world stochastic electricity markets.

asymmetric data availability While centrally managed
power system operations and electricity markets typically rely on
forecasts from commercial providers, [204], the same data might not
be available to all stakeholders in the system. Similarly, individual
resource operators may have access to more divers data at higher res-
olution that is not shared externally. General information asymmetry
may be included via coherent risk metrics as done in Chapter 8 or via
iterative negotiation as proposed in recent work in [205]. However,
these approaches neglect any cost of obtaining forecast data from
third-party providers and, thus, the trade-off between additional cost
of procuring more accurate forecasts and potentially increased profits
from using such forecast. By designing suitable products or incentive
schemes operators may be encouraged to invest in better forecast and
share the resulting data with the system operator and other market
participants. We expect that such data-products or data-markets will
further mitigate adverse effects of stochastic RES and DERs.
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A P R I M E R O N ( C O N V E X ) O P T I M I Z AT I O N

This chapter provides a brief overview on some optimization con-
cepts that are relevant for this dissertation. The main vocabulary and
definitions are adapted from [198] and the section on conic optimiza-
tion additionally follows [177].

a.1 definitions

Consider the following generic constrained optimization problem:

min
x

f0(x) (A.1a)

s.t. fi(x) 6 0 i = 1, ...,m (A.1b)

hi(x) = 0 i = 1, ...,p, (A.1c)

where x = [x1, ..., xn]> is the vector of decision variables. Problem
(A.1) minimizes objective (A.1a) while enforcing inequality constraints
in (A.1b) and equality constraints in (A.1c). Any point x that satisfies
all constraints (A.1b) and (A.1c) is called feasible point and the set of all
feasible points is called feasible set. If the feasible set is empty, i.e. the
constraints contradict each other, the problem is infeasible. The optimal
value of (A.1) is the smallest p∗ = f0(x∗) that can be attained from the
feasible set and the corresponding feasible point x∗ is called optimal
point. The pair (p∗, x∗) is typically referred to as optimal solution. It
is worth pointing out that the function in the problem objective does
not necessarily require a mathematically special treatment. In fact,
the problem

min
x,t

t (A.2a)

s.t. f0(x) 6 t (A.2b)

fi(x) 6 0 i = 1, ...,m (A.2c)

hi(x) = 0 i = 1, ...,p, (A.2d)

is exactly equivalent to (A.1), even though f0 is now a constraint. For-
mulation (A.2) is called the epigraph form of problem (A.1). The math-
ematical properties of functions f0, {fi}i=1,...,n, {hi}i=1,...,p and the re-
sulting feasible set, determine possible approaches to find an optimal
solution. Ideally, the problem is convex

To set up a discussion on convex optimization, we first require
some definitions of convexity in a more general sense.

Definition A.1 (Convex Set). A set C is called convex if for any two
points x1, x2 ∈ C and any θ ∈ [0, 1] the combination θx1 + (1− θ)x2 ∈ C.
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We call a combination θ1xi + . . . + θkxk of points x1, . . . , xk with
θ1 + . . . + θk = 1 a convex combination and note that every convex
set contains all convex combinations of all its elements.

Definition A.2 (Convex Hull). The convex hull of a set X, i.e conv(X),
is the set of all convex combinations in X:

conv(X)= {θ1xi+ . . .+θkxk | xi ∈ X, i=1, . . . ,k, θ1+ . . .+θk=1}.

For every convex set C we have C ≡ conv(C) and for every non-convex
set X we have X ⊂ conv(X). We can now define

Definition A.3 (Convex Function). A function f : Rn → R is called
convex if for all1 x1, x2 with any θ ∈ [0, 1] we have

f(θx1 + (1− θ)x2) 6 θf(x1) + (1− θ)f(x2).

The connection between convex sets and convex functions can be
made through the epigraph epi(f) of function f.

Definition A.4 (Epigraph). The epigraph of a function f : Rn → R is

epi(f) = {(x, t) | f(x) 6 t}.

A function is convex if and only if its epigraph is a convex set. Fur-
ther, assuming that f is differentiable2, Definition A.3 implies that f
is convex if and only if

f(x2) > f(x1) +∇f(x1)>(x2 − x1). (A.3)

See [198, Section 3.1.3] for the proof. If value f(x1) and gradient
∇f(x1) of function f at point x1 is known (local information) we can
infer a relationship to the value of f at any other point x2 (global infor-
mation) through (A.3). This property enables most of the beneficial
properties of convex optimization.

Definition A.5 (Convex Optimization). An optimization problem of the
form (A.1) is called convex if the functions defining objective and inequal-
ity constraints f0, . . . , fm are convex and all functions defining equality
constraints are affine, i.e. hi(x) = a>i x− bi, i = 1, . . . ,p.

Note that minimizing a convex objective f0 is equivalent to maximiz-
ing the concave3 objective −f0.

Definition A.6 (Linear Optimization). A convex optimization problem is
called linear if the functions defining objective and inequality constraints
f0, . . . , fm are affine, i.e. fi(x) = a>i x− bi, i = 0, . . . ,p.

1 An explicit discussion of the domains is omitted given the limited impact on the
required applications and the possibility of domain extension as f̃(x) := {f(x) if x ∈
dom f,∞ else}.

2 As is assumed for all functions here throughout.
3 See Definition A.3, but reverse the inequality sign.
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a.2 duality and optimality

Property (A.3) of convex functions can be used to derive an optimality
criterion based on the observation that any local minimum of convex
f0 will also be a global minimum: If ∇f0(x1) = 0 for any x1, then,
given (A.3), f0(x2) > f0(x1) for any x2, thus identifying x1 as a global
minimizer. For a constrained optimization problem, however, the
global minimizer of f0 might not be an element of the problem’s
feasible set X and we get that x1 ∈ X is optimal if and only if

∇f0(x1)>(x2 − x1) > 0 ∀x2 ∈ X. (A.4)

See [198, Section 4.2.3] for the proof.
How to find such an optimal point is, however, unclear, which leads

us to the introduction of Lagrangian Duality:

Definition A.7 (Lagrangian/Dual Function). Consider an optimization
problem of the form (A.1). Its Lagrangian is defined as:

L(x, λ,ν) := f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

and λi and νi are called Lagrangian multipliers of their respective con-
straints and vectors λ = [λ1, . . . , λm] and ν = [ν1, . . . ,νp] are called dual
variables of the optimization problem. The minimum of L over x is the
defined as Dual Function g(λ,ν):

g(λ,ν) := min
x
L(x, λ,ν).

Notably, g(λ,ν) is an unconstrained optimization problem. Under con-
dition λ > 0, dual function g(λ,ν) has the important property that it
constitutes a lower bound for optimal value p∗, [198, Section 5.1.3]:

g(λ,ν) 6 p∗. (A.5)

Thus, the best lower bound on p∗, denoted d∗, is the optimal value of

max
λ,ν

g(λ,ν) (A.6a)

s.t. λ > 0, (A.6b)

which is called dual problem and is convex, even if (the so called primal)
problem (A.1) is not, [198, Section 5.2]. Optimal value d∗ of the dual
problem is by definition the best lower bound of optimal value p∗

and d∗ 6 p∗ holds even for non-convex optimization problems. This
property is called weak duality. If the primal problem is convex, and
there exists a strictly feasible point x such that fi(x) < 0, i = 1, . . .m
and hi(x) = 0, i = 1, . . . p, also strong duality holds and d∗ = p∗.
This property is called Slater’s condition and is extremely useful for
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finding (globally) optimal solutions, especially for numerical solvers:
If f0(x̃) = g(λ̃, ν̃) for a set of candidate primal and dual points x̃
and (λ̃, ν̃), then x̃ is primal optimal and (λ̃, ν̃) is dual optimal. If
f0(x̃) − g(λ̃, ν̃) 6 ε, then it is guaranteed that the candidate solution
is not more than ε suboptimal. Difference f0(x̃) − g(λ̃, ν̃) is called
duality gap.

If strong duality can be assumed (e.g. when the problem of in-
terest is convex and Slater’s condition holds) we find the following
important property:

Definition A.8 (Complementary Slackness). Given an optimization
problem of the form (A.1) and assuming strong duality, for any primal opti-
mal x∗ and dual optimal (λ∗,ν∗) it holds that, [198, Section 5.5.2]:

λ∗i fi(x
∗) = 0, i = 1, . . . ,m,

i.e. all inequality constraints and their dual multipliers are connected under
complementary slackness such that

fi(x
∗) < 0 ⇒ λ∗i = 0 λ∗i > 0 ⇒ fi(x

∗) = 0.

Finally, we observe that for any primal optimal x∗ and dual optimal
(λ∗,ν∗) the (unconstrained) Lagrangian L(x∗, λ∗,ν∗) is minimized as
per Definition A.7 so that

∇L(x∗, λ∗,ν∗) = 0.

Definition A.9 (KKT Conditions). Given an optimization problem of the
form (A.1) and assuming strong duality, the following KKT-conditions hold
for any primal and dual optimal points x∗, (λ∗,ν∗):

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑
i=1

νi∇hi(x∗) = 0

fi(x
∗) 6 0, λ∗i > 0, λ

∗
i fi(x

∗) = 0 i = 1, . . . ,m

hi(x
∗) = 0 i = 1, . . . ,p.

If the primal problem is convex, then the KKT-conditions are also
sufficient, [198, Section 5.5.3], i.e. any x, (λ,ν) that fulfill the KKT-
conditions are optimal with zero duality gap.

a.3 additional notes on conic optimization

Conic programming constrains some decision variables of an opti-
mization problem to be an element of one or more conic sets.

Definition A.10 (Cone, Convex Cone, Proper Cone, Dual Cone). A
set C is called a cone if for every x ∈ C and θ > 0 we have θx ∈ C. If
C is additionally convex it is a convex cone and for any x1, x2 ∈ C and
θ1, θ2 > 0 we have θ1x1 + θ2x2 ∈ C. A cone C is called proper if it is
convex, closed, has a non-empty interior and is pointed, i.e. contains no line.
The set C∗ = {y | x>y > 0∀x ∈ C} is called the dual cone of a cone C.
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All cones that are of interest for this dissertation are proper. Proper
cones allow the definition of the generalized inequality:

x �C y ⇔ y− x ∈ C. (A.7)

Using (A.7) Problem (A.1) can be generalized by writing the inequal-
ity constraints in (A.1b) as

fi(x) �C 0, i = 1, . . . ,m, (A.8)

which is equivalent to requiring −fi(x) ∈ C. Notably, all properties
and concepts that have been derived in Section A.2 remain valid in
the context of generalized inequality constraints with the exception
that the non-negativity of dual λi also needs to be required in terms
of a generalized inequality, λi �C∗ 0, [198, Section 5.9]. It follows that
for any convex optimization problem with conic constraints of the
form (A.8) (and especially any linear problem with conic constraints)
the KKT conditions as in Definition A.9 are sufficient to identify the
primal and dual optimal points x∗, (λ∗,ν∗).

Many non-linear or initially non-convex constraints can be ex-
pressed as conic constraints, see [177]. The remainder of this section
briefly introduces quadratic cones as they are the most important
for the formulations in this dissertation. Let x ∈ Rn be itemized as
x = [x1, . . . xn] and we define:

Definition A.11 (Quadratic Cone/Second-Order Cone). The (1+ n)-
dimensional quadratic cone (or second-order cone) is defined as

Q1+n :=
{
(t, x) ∈ R1+n | t >

√
x21 + . . .+ x

2
n

}
=
{
(t, x) ∈ R1+n | t > ‖x‖2

}
.

Definition A.12 (Rotated Quadratic Cone). The (2+n)-dimensional ro-
tated quadratic cone is defined as

Q2+nr :=
{
(t,h, x) ∈ R2+n | 2th > x21 + . . .+ x

2
n, t,h > 0

}
=
{
(t,h, x) ∈ R2+n | 2th > ‖x‖22 , t,h > 0

}
Using Definitions A.11 and A.12, we find the following important

reformulations (for an exhaustive list of conic reformulations of con-
straints see [177]).

second-order cone constraint A constraint on decision
variable x ∈ Rn of the form

‖Ax+ b‖ 6 c>x+ d, (A.9)

with parameter matrix A ∈ R× and parameter vector c ∈ Rn is called
second-order cone constraint. Using Definition A.11 and introducing
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auxiliary variables t ∈ Rm and h ∈ R, constraint (A.9) is equivalent
to the set of constraints

t = Ax+ b (A.10a)

h = c>x+ d (A.10b)

(t,h) ∈ Qm+1. (A.10c)

Constraints (A.10a) and (A.10b) are affine and constraint (A.10c) is
conic convex. Therefore, if the remainder of the problem is convex,
the KKT-conditions can be applied.

convex quadratic set Consider the quadratic constraint on de-
cision variables x ∈ Rn and t ∈ R of the form

1

2
x>Qx+ c>x 6 t, (A.11)

with positive semidefinite parameter matrix Q ∈ Rn×n and parame-
ter vector c ∈ Rn. First, because Q is positive semidefinite, x>Qx is a
convex set and allows the following epigraph form of (A.11):

h+ c>x 6 t (A.12a)

x>Qx 6 2h. (A.12b)

Second, due to Q being positive semidefinite there exists a decompo-
sition Q = (Q1/2)>(Q1/2) that allows the following reformulation of
(A.12b) based on Definition A.12:

(t, 1, (Q1/2)x) ∈ Q2+nr . (A.13)

Enforcing (A.12a) and (A.13) is equivalent to enforcing (A.11).



B
A P R I M E R O N ( O P T I M A L ) P O W E R F L O W

This chapter recalls some fundamentals of modeling power flows and
shows the derivation of the standard power flow equations, their con-
nection to OPF, as well as their common approximations and relax-
ations used in transmission and distribution system analyses. As
outlined in Section 1.2, the scope of this dissertation is restricted to
balanced system operation in a steady state. The derivations in this
chapter reflect this restriction and mostly follow the logic of [8], [50].
The derivations in Section B.4 are adapted from [50] and those in
Section B.5 follow [185].

b.1 complex power injections

With very few exceptions, power systems rely on power transmission
via AC, meaning that the functions describing the temporal evolution
of current and voltages, i(t) and v(t), respectively, are harmonic func-
tions characterized by their spectrum of magnitudes and frequencies.
In steady state, these functions can be assumed sinusoidal with fre-
quency ω (typically 50 or 60 Hz).1 Thus, the voltage vk(t) at bus k
and the current ik(t) injected into the system at bus k can be written
as:

vk(t) = V
max
k cos(ωt+ θVk ), ik(t) = I

max
k cos(ωt+ θVk ), (B.1)

where Vmax
k and Imax

k are constant2 amplitudes of voltage and current,
respectively, and θVk and θIk are the voltage and current phases (or
phase angles). The resulting instantaneous power pk(t) injected at bus
i is

pk(t) = vk(t)ik(t) = V
max
k Imax

k cos(ωt+ θVk ) cos(ωt+ θIk)

=
1

2
Vmax
k Imax

k cos(θVk − θIk) + cos(2ωt+ θVk + θIk),

(B.2)

and the resulting average power pk over one period 2π/ω is

pk =
ω

2π

∫ 2π/ω
0

pk(t) =
1

2
Vmax
k Imax

k cos(θVk − θIk). (B.3)

1 Note that the angular frequency and its common notation ω is only used in this
chapter. In all other chapter ω refers to uncertainty.

2 In steady state the amplitudes can be considered constant. To capture dynamics and
state transitions, time-depended amplitudes have to be modeled. See e.g. [51] for
more details.

159



160 a primer on (optimal) power flow

Ik
zkm

Vk − Vm

Im
k

Vk

0

m

Vm

0

Figure B.1: Power flow over a complex impedance.

The harmonic properties of vk(t) and ik(t) allow a more compact
expression in terms of (effective) phasors. Recalling Euler’s identity
e±jθ = cos θ± j sin θ, where j :=

√
−1 (to avoid confusion with the

notation for current), we can write v(t) and i(t) as

vk(t) = V
max
k <(ej(ωt+θ

V
k )) = <(Vmax

k ejθ
V
k ejωt) (B.4)

ik(t) = I
max
k <(ej(ωt+θ

I
k)) = <(Imax

k ejθ
I
kejωt), (B.5)

where <(ejθ) = cos(θ), i.e. the real part of the exponential function.
We define the effective voltage and current phasors at bus k as

Vk =
Vmax
k√
2
ejθ

V
k , Ik =

Imax
k√
2
ejθ

I
k , (B.6)

where ejωt, i.e. information on (constant) frequency and time have
been dropped. Using (B.6) we can now express average power pk as
defined in (B.3) as:

pk =
Vmax
k√
2

Imax
k√
2

cos(θVk − θIk)

= |Vk||Ik| cos(θVk − θIk)

= <(VkI
∗
k),

(B.7)

where the asterisk * denotes the complex conjugate. We call pk =

<(VkI
∗
k) active power. Further, equation (B.7) suggests the definition

of the quantities

qk = =(VkI
∗
k) = |Vk||Ik| sin(θVk − θIk), (B.8)

where =(ejθ) = cos(θ), i.e. the imaginary part of the exponential
function, and

sk = pK + jqk = VkI
∗
k, (B.9)

i.e. the complex number composed from pk and qk. We call qk reac-
tive power and sk apparent power. Phase difference θVk − θIk is typically
denoted φk, and cosφk, as in (B.7), is called the power factor at bus
k. Notably, if θVk − θIk = φk = 0 then cosφk = 1 and Sk = pk, i.e. at
unity power factor bus k only injects active power into the system.

Consider the simple circuit in Figure B.1. The (complex AC) current
Ik = −Im flowing from k to m is related to the (complex AC) voltage
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difference Vk − Vm through the complex impedance zkm, which is de-
fined in terms of its real and imaginary parts:

zkm = rkm + jxkm. (B.10)

We call rkm and xkm resistance and reactance, respectively. It holds
that

Vk − Vm = zkmIk. (B.11)

The inverse 1
zkm

= ykm is called admittance and it holds that:

Ik = ykm(Vk − Vm), (B.12)

and

ykm =
1

zkm
=

rkm

r2km − x2km
+ j

−xkm

r2km + x2km

= gkm + jbkm,
(B.13)

where we call gkm and bkm conductance and susceptance.

Box 3 – On missing phases.

All derivations in this section rely on single phase representations of
all parts of the studied power system. Notably, AC power is generated
and transmitted on three-phases that are ideally balanced. The (balanced)
three-phase system ensures a more efficient power transmission and
reduces the necessary amount of conducting material, e.g. by avoiding
the use of a neutral conductor, [8].

For any three phase signal (e.g. voltage or current) in a balanced
three-phase AC systems it holds that the components on each phase
only differ by a phase angle shift of 2π3 (120 degree). Therefore, for any
balanced three-phase signal xabc(t) we have:

xabc(t) =

xa(t)xb(t)

xc(t)

 = Xmax

 cos(ωt)

cos(ωt− 2π
3 )

cos(ωt+ 2π
3 )

 .

Notably, xabc(t) is fully defined by its amplitude Xmax and frequency
ω, allowing us to only consider one phase in all derivations of such a
system.

b.2 power flow equations

Consider a power system with n buses collected in set N connected
by l lines collected in set L. The electrical characteristics of (non-
transforming) transmission equipment (e.g. overhead transmission
lines) between two busses k ∈ N andm ∈ N can be modeled using the
Π-model as shown in Figure B.2. In addition to the (series) impedance
zkm = 1/ykm the model is endowed with the shunt admittance ysh

km =
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Figure B.2: Non-transforming Π-model of bus interconnection.

gsh
km + jbsh

km. The impedance mainly captures the branches inductive
characteristics and, in fact, resistance rkm is typically an order of
magnitude smaller than reactance xkm and ignored in some models,
see Section B.4. The shunt admittance mainly captures capcitative
effects and typically bsh

km dominates gsh
km.

Consider the schematic in Figure B.2. Here, for every bus k ∈ N

we differentiate between the net power injection sk = sG,k − sD,k,
i.e. generation minus load, carried by current Ik at voltage Vk, and
currents Ikm flowing over the branch between k and any other bus
m ∈ Nk, where Nk is the set of all buses connected to bus k. For all
k ∈ N and km : m ∈ Nk current Ikm satisfies

Ikm = ykm(Vk − Vm) +
1

2
ysh
kmVk, (B.14)

and

Ik =
∑

km:m∈Nk

Ikm. (B.15)

Let vectors I = [Ik, k ∈ N]> ∈ Cn and V = [Vk, k ∈ N]> ∈ Cn collect
the (complex) current injections and voltages of all buses. Using (B.14)
and (B.15) we can construct a bus admittance matrix Y ∈ Cn×n so that

I = YV , and Ik =
∑
m∈N

YkmVm. (B.16)

Matrix Y with elements Ykm is constructed as

Ykm =


∑
ko:o∈Nk yko +

1
2y

sh
ko, if m = k

−ykm, if m ∈ Nk

0, else.

(B.17)

From Y ∈ Cn follows the possible decomposition

Y = G+ jB (B.18)

with G ∈ Rn and B ∈ Rn.
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We can now create a useful and compact formulation. First, we
define vk := |Vk| and θkm = θk − θm (where we have dropped the V
superscript) for more concise notation and to obtain consistency with
the main text of this dissertation. Next, using (B.9) and (B.16), power
sk injected by bus k is given as

sk = VkI
∗
k = Vk

( ∑
m∈N

YkmVm
)∗

= Vk
∑
m∈N

Y∗kmV
∗
m

=
∑
m∈N

vkvm(cos θkm + j sin θkm)(Gkm − jBkm),
(B.19)

from which we get

pk = <(sk) =
∑
m∈N

vkvm(Gkm cos θkm +Bkm sin θkm) (B.20)

qk = =(sk) =
∑
m∈N

vkvm(Gkm sin θkm −Bkm cos θkm). (B.21)

For power flow analysis it is useful to decompose (B.20) and (B.21)
into power flow and injection components such that:

f
p
km = vkvm(Gkm cos θkm +Bkm sin θkm) (B.22a)

f
q
km = vkvm(Gkm sin θkm −Bkm cos θkm) (B.22b)

pk = v2kGkk +
∑

km:m∈Nk

f
p
km (B.22c)

qk = −v2kBkk +
∑

km:m∈Nk

f
q
km, (B.22d)

where fpkm and f
q
km denote the active and reactive power injected

by bus k into line km. Equations (B.22) are referred to as the (AC)
power flow equations. Notably, fpkm 6= −fpmk and fqkm 6= −fqmk. The
differences fpkm + fpmk and fqkm + fqmk capture the active and reactive
power losses in the system.

Remark B.1. (Including transformer branches) A transformer between
k and m with admittance ytx

km and a normalized turn ratio of a :

1, a > 0, such that current Ikm and voltage Vk are transformed to
aIkm and 1

aVk, can be modeled in terms of the Π-model setting the
shunt admittance at bus k to 1−a

a2
ytx
km, the series admittance 1

ay
tx
km,

and the shunt admittance at bus m to a−1
a ytx

km. See [8, Example 9.3]
or, for more detailed model derivations, [50, Appendix B].

b.3 the power flow problem and optimal power flow

The power flow problem summarizes the task of finding a solution to
(B.22) for given injections from generation and loads, as well as volt-
age requirements. The optimal power flow (OPF) problem extends the
power flow problem to finding the optimal decision of available (con-
strained) decision variables, such as generation and voltage levels,
that solve (B.22).
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Each bus is described by its active and reactive net injection, pk =

pG,k − pD,k and qk = qG,k − qD,k, as well as its voltage magnitude
and angle, vk and θk, i.e. a set of four variables or parameters. How-
ever, for each bus there are only two independent equations in (B.22).
To render the problem well-defined, each bus is assigned a type:

• At “PV” buses, active power injection and voltage magnitudes
are fixed as parameters, i.e. are considered controlled. PV buses
are typically busses with connected generators.

• At “PQ” buses, active and reactive power injections are fixed.
PQ buses are typically load busses.

• Finally, the reference bus, or θV bus, has fixed voltage angle
(typically zero) and magnitude. The θV accounts for the fact
that (B.22) rely on voltage differences and compensate for power
losses in the system (which are unknown before the solution of
the problem.)

Power flow equations (B.22) are non-linear and non-convex. While
the power flow problem can be solved efficiently with iterative ap-
proaches such as the Newton-Raphson method, [8], or more ad-
vanced algorithms, e.g. [206], ACOPF requires additional effort to en-
sure optimality and feasibility. For many practical purposes (B.22)
can be approximated, e.g. via linearization or neglecting weak cou-
plings between active power and voltage magnitudes, and reactive
power and voltage angles, or replaced with a convex relaxation, e.g.
second-order conic or semidefinite, [167], [207], [208]. The remainder
of this chapter shows two common modifications of the power flow
equations for OPF analyses in transmission (Section B.4) and distribu-
tion (Section B.5) systems.

b.4 dc power flow approximation

In high-voltage transmission systems, the electrical properties of any
transmission line km is typically dominated by its reactance xkm
and, thus, resistance rkm as well as shunt admittance ysh

km can be
neglected. Further, under normal operating conditions, vk ≈ 1p.u.,
i.e. all voltage magnitudes are very close to the nominal system volt-
age, and voltage angle differences |θkm| for all connection k to m are
small. (See Box 4 for a brief description of the unit p.u.) This gives
the following set of approximations, [S3], [7], [44]:

rkm ≈ 0, ysh
km ≈ 0 (B.23a)

vkvm ≈ 1 (B.23b)

sin θkm ≈ θkm, cos θkm ≈ 0. (B.23c)
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Using (B.23) we get for active power injections and flows from
(B.22)

f
p
km = Bkmθkm = Bkm(θk − θm) (B.24a)

pk =
∑

km:m∈Nk

f
p
km. (B.24b)

Equations (B.24) are typically called DC power flow equations because
the linear relation (B.24a) is loosely reminiscent of Ohm’s law for DC
circuits. Note that using (B.23) on reactive power flows and injections
from (B.22) eliminates them and they are ignored in the DC power
flow formulation. Also, due to rkm ≈ 0 active power losses are not
accounted for and fpkm = fpmk for all km ∈ N.

For all Bkm in (B.24) we now have:

Bkm =


∑
ko:o∈Nk

1
xko

, if m = k

− 1
xkm

, if m ∈ Nk

0, else,

(B.25)

and matrix B is called bus susceptance matrix. The vector of active
power injections p = [pk, k ∈ N]> ∈ Rn and the vector of voltage an-
gles θ = [θk, k ∈ N]> ∈ Rn are now related via the linear relationship

p = Bθ. (B.26)

A similar formulation can be found for the vector of active power
flows fp = [fkm, km ∈ L] ∈ Rl. Let A ∈ {−1, 0, 1}l×n be the arc-node
incidence matrix of the arbitrarily oriented graph Γ(N,L) describing
the studied network, such that all entries Akm are zero except Akm =

1 and Amk = −1 if there exits an arc (line) between nodes (buses) k
and m that is pointing from k to m. Further, let b = [bkm, km ∈ L] ∈
Rl be the vector of line susceptances, then we can write

fp = diag(b)Aθ = B(f)θ, (B.27)

where B(f) := diag(b)A is the so called line susceptance matrix. Note
that B = A> diag(b)A. Denoting B = B(n) for clarity, we can now
formulate the linear DCOPF problem as used in Section 3.2 on page 33.

Vector p of active power injections and vector fp of active power
flows are directly connected through vector θ of voltage angles as per
(B.26) and (B.27) so that fP = B(f)(B(n))−1p. However, because (B.26)
and (B.27) rely on voltage angle differences matrix B(n) is not directly
invertible. Instead, we need to define a reference (or “slack” bus, see
also Section B.3) with fixed voltage angles. Without loss of generality
we choose the index of the slack node to be islack = 1. This allows the
following definition of a pseudo-inverse B̂(n) of B(n) as

B̂(n) :=

[
0 0

0
(
B̃(n)

)−1
]

, (B.28)
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where B̃(n) ∈ SN−1 is the bus susceptance matrix without the row
and column associated with the slack bus (first row and first column
in our case). We can now write

fP = B(f)B̂(n)p =: B(p)p, (B.29)

where we call B(p) the power transfer distribution factor (PTDF) matrix.

Box 4 – On the per-unit system

Power system analyses commonly applies the so called per-unit system
to relate parameter and variable values to a fixed base value. Typi-
cal base quantities are base (apparent) power sbase and base voltage
(magnitude) Vbase. Base power sbase is used to scale power flows, gen-
erator outputs and loads (i.e. all power related quantities) and is fixed
throughout the system. Base voltage Vbase, in analogy, scales voltage
related quantities and is fixed throughout the same voltage level of the
system. Other base quantities that are used to scale current, impedance
and susceptance can be obtained from sbase and Vbase:

Ibase =
sbase

Vbase

zbase =
Vbase

Ibase =
(Vbase)2

sbase

ybase =
1

Zbase .

All base quantities have the value of 1p.u.:

sbase = Vbase = Ibase = zbase = ybase = 1p.u..

The per unit value of real quantities can be obtained as:

ap.u. =
areal

abase .

The per-unit system has various advantages. It avoids explicit cal-
culations of voltage and current on either side of transformers, it al-
lows an immediate intuition of whether or not the system is operating
at nominal values and it enables the DC approximation where we use
VkVm ≈ 1p.u..

b.5 branch flow and lindistflow

The so called branch flow model is an approximation of the AC power
flow equations for radial networks and has initially been introduced
in [115], [209]. A network is called radial if the network graph Γ(N,L)
is a tree. Further, without loss of generality we define Γ as a directed
graph such that all arcs are pointing away from the root node, in-
dexed as 0, and we call this direction downstream, see Figure B.5. Be-
cause Γ is a tree, each node k 6= 0 has exactly one parent node Ak and
a, potentially empty, set of children nodes Ck.
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Figure B.3: Branch flow model notations

b.5.1 Branch Flow and Relaxations

While we maintain the line model introduced in Figure B.2 above, we
slightly change its notation as shown in Figure B.3. First we note that
each line from k tom is uniquely defined by its downstream node and
we can resort to using a single index k ∈ N+, where N+ = N \ {0}, to
define line-specific variables (flow, current, impedance). Next, with
each line k ∈ N+ we only associate its series impedance zk = rk+ jxk.
Shunt admittance yk = gk + bk is attributed to the network’s buses.
We drop the sh superscript and note that shunt admittance is always
expressed as admittances and series impedance is always expressed
as impedance.

Introducing fsk as the apparent power flowing into bus k, see Fig-
ure B.3, we can set up the branch flow equations directly as:

VAk − Vk = zkIk (B.30a)

fsk = VkI
∗
k (B.30b)

fsk + sk =
∑
m∈Ck

(fsm + zmi
2
m) + ykv

2
k. (B.30c)

Equation (B.30c) sets the power balance for each node including line
losses Im(Vk − Vm) = zmi

2
m and shunt losses ykv2k. We now define

uk = v2k and lk = i2k to simplify notations. From (B.30a) and (B.30b)
and noting that uAk = |VAk |

2 = VAkV
∗
Ak

we get

VAk = Vk + zkIk = Vk + zk
fsk
Vk

⇒ uAk = uk + |zk|
2lk + (zkf

∗
k + z

∗
kfk).

(B.31)

Next, by noting that (B.30b) implies |fsk|
2 = |Vk|

2|Ik|
2 and splitting

(B.30c) into its active and reactive components, we obtain the relaxed
branch flow equations

f
p
k + pk =

∑
m∈Ck

(fpm + rmlm) + gkuk (B.32a)
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f
q
k + qk =

∑
m∈Ck

(fqm + xmlm) + bkuk (B.32b)

uAk = uk + 2(rkf
p
k + xkf

q
k) + (r2k + x

2
k)lk (B.32c)

lk =
(fpk)

2 + (fqk)
2

uk
. (B.32d)

Equations (B.32) are dubbed “relaxed” due to the elimination of
any dependence from current or voltage phase angles, thus relaxing
points to circles on the convex plane. However, the resulting solution
allows the recovery of voltage angles and thus the recovery of the
solution to the original problem in (B.30b), [167].

From an OPF perspective, the only non-linear equation (constraint)
in (B.32) is (B.32d). The equality (B.32d) can be relaxed to an inequal-
ity such that

lk >
(fpk)

2 + (fqk)
2

uk
. (B.33)

If used as a constraint in an OPF problem, (B.33) can be formulated as
the following convex SOC constraint

lk + vk >
∥∥[2fpk, 2fpq, lk − vk]

∥∥
2

. (B.34)

(See Appendix A.3 for more information on second-order cones.)
This relaxed constraint has been shown to be tight in the optimal so-
lution of an radial OPF and thus provides an optimal solution to the
original branch flow model, [167]. A OPF formulation for a radial dis-
tribution grid using the SOC relaxed branch flow model is presented
in Section 6.2.2 on page 95.

b.5.2 LinDistFlow

The so called LinDistFlow model is a common linear approximation
of the relaxed branch flow model (B.32). We obtain this approxi-
mation by dropping terms related to losses so that (i) yk ≈ 0, (ii)
|zk|

2 ≈ 0, and (iii) rmlm ≈ 0, xmlm ≈ 0. As a result, active and
reactive power flows are decoupled and current square lk can be re-
moved from the set of equations. The resulting LinDistFlow equations
are thus given as

f
p
k + pk =

∑
m∈Ck

fpm (B.35a)

f
q
k + qk =

∑
m∈Ck

fqm (B.35b)

uAk = uk + 2(rkf
p
k + xkf

q
k). (B.35c)

These linear equations are the basis for the CC-OPF formulations for
radial systems as presented in Chapters 4,5 and 6.



C
A P R I M E R O N ( E L E C T R I C I T Y ) M A R K E T T H E O RY

This chapter recalls some fundamentals of (micro)economic theory in
the context of electricity markets and derives the marginal-cost-based
pricing concept. The derivations of this chapter mainly follow [34],
[117], [118]. An interesting discussion on electricity markets from the
perspective of control theory is given in [40]. This chapter relies on
some concepts of convex optimization introduced in Appendix A.

To not exceed the scope of this dissertation, this chapter does not
provide a discussion of the fundamental philosophy of market-based
coordination or the underlying assumptions of economic theory. The
author recommends [210].

c.1 producer decisions

We first introduce the concept of marginal cost and establish a rela-
tion to prices in a competitive market. Then, we discuss other cost
components and short- and long-run profits.

Proposition C.1 (Marginal Cost). Let ci(pG,i) be the cost function of a
generator i describing the cost for operating at production level pG,i and let
πp be the payment (price) for each produced unit pG,i which is independent
of pG,i (i.e. generator i is a price-taker). The optimal (profit maximizing)
production level p∗G,i is attained when the marginal cost of production
∂ci(pG,i)
∂pG,i

are equal to price πp, i.e.:

∂ci(p
∗
G,i)

∂pG,i
= πp. (C.1)

Proof. If πp is fixed, the only decision variable of generator i is pG,i.
The profit maximization problem is thus given as

p∗G,i = arg max
pG,i

(πppG,i − ci(pG,i)). (C.2)

Equation (C.2) can be solved as:

∂

∂pG,i
(πppG,i − ci(pG,i)) = 0, (C.3)

which immediately leads to the result in (C.1).

Corollary C.1 (Upper Production Limits). Consider Proposition C.1.
If optimal production p∗G,i given price πp is larger than the generators
capacity pmax

G,i , then price πp is equal to the generators marginal cost
∂ci(pG,i)
∂pG,i

∣∣∣
pG,i=p

max
G,i

plus a margin δi that is the shadow price of the capacity

constraint.

169
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Proof. The capacity-constrained profit maximization problem of gen-
erator i with respect to price πp is given as

max
pG,i

πppG,i − ci(pG,i) (C.4a)

s.t.

(δi) : pG,i 6 p
max
G,i , (C.4b)

where δi is the Lagrangian dual multiplier (see Appendix A) of con-
straint (C.4b). The Lagrangian function of (C.4) is

Li(pG,i, δi) = −(πppG,i − ci(pG,i) + δ
+
i (pG,i − p

max
G,i ). (C.5)

From solving ∂
∂pG,i

L = 0 we obtain

πp =
∂c(pG,i)

∂pG,i
+ δ+i . (C.6)

If constraint (C.4b) is binding, then δ+i > 0 and (C.6) is the result of
Corollary C.1; Otherwise we recover the result of Proposition C.1

Multiplier δi captures the value of an additional unit from this gen-
erator if it could extend its capacity. This term is referred to as scarcity
rent, because it describes payments made to this generator beyond its
marginal cost due to its, scarcity, [118]. This term, however, is unique
to power system economics and has no rigorous counterpart in mi-
croeconomics.

Corollary C.2 (Lower Production Limits). Consider Proposition C.1. If
optimal production p∗G,i given price πp is lower than the generators mini-
mum generation capacity pmin

G,i , then the generator will not produce.

Proof. If pmin
G,i = 0, then proof is analogous to Corollary C.1. If pmin

G,i >

0 we nee to add a binary option ui ∈ {0, 1} of not producing:

max
pG,i

ui(π
ppG,i − ci(pG,i)) (C.7a)

s.t.

(δi) : uip
min
G,i 6 pG,i. (C.7b)

ui ∈ {0, 1}. (C.7c)

If πp < ∂ci(pG,i)
∂pG,i

∣∣∣
pG,i=p

min
G,i

, then the maximum profit is 0 with ui = 0.

Otherwise we recover the result of Proposition C.1.

If a generator produces at marginal cost and does not receive a
scarcity rent, it is called marginal unit. In this case, payment πppG,i

will cover immediate variable cost, e.g. fuel. Fixed cost, e.g. capital cost,
that occur even when the generator is not in use, are recovered over
time on average in a competitive market, because time dependent
price fluctuations will create sufficient scarcity rents, [118, Sections
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1-5.3, 2–2]. Additionally, production at marginal cost is a short-run
profit optimization strategy, i.e. the generator cost function is fixed
and cost depend only on the chosen level of production. In the long-
run, the generator might be able to alter the parametrization of its
cost-function, e.g. by investments in new equipment, supply-chain
adaptations or leaving the market.

c.2 competitive equilibrium

If a market is competitive, i.e. no individual participant can exe-
cute market power to influence the price, all participants are profit-
maximizing and share necessary information, then there exists a
competitive equilibrium in which supply meets demand and the price
equals the marginal cost of production. The existence of this “equi-
librium” implies the existence of some form of “dynamics”. These
dynamics are related to price and quantity adjustments that lead to
an efficient market clearing, [118, Section 1-5]. Quantity adjustments
refer to the profit-maximizing behavior of price taking producers de-
rived in Section C.1 above. If the price is higher than the marginal
cost, generators will increase production and vice versa. Price ad-
justments occur at quantity mismatches. If demand exceeds supply
producers will increase their asking price and vice versa.

When all market participants can observe market prices and traded
quantities, a sequence of quantity and price adjustments will eventu-
ally reach an equilibrium state as shown in the classic supply-and-
demand graphic in Figure C.1. The red graph plots the aggregated
profit-maximizing production level of all generators in the market,
i.e. their marginal cost. The blue graph plots the total demand pD as
a function of the price. If demand is inelastic it resembles a vertical
line and thus fixes the required production quantity. At equilibrium
all marginal units have the same marginal cost, i.e. there are no sav-
ing opportunities by reducing the production of one generator and
increasing the production of another, thus rendering it efficient [118,
Section 1-5].

Aggregated scarcity rents, i.e. differences between marginal pro-
duction cost and price πp, are called producer surplus and are shown
as the striped area in Figure C.1. The aggregated differences between
price πp and the customers’ willingness to pay are called consumer
surplus and are shown as the dotted area in Figure C.1. The sum of
producer and customer surplus is called social welfare. The market is
efficient when welfare is maximized. If demand is fixed and inelas-
tic, consumer surplus is infinite (or can not be reasonably defined).
In this case, the market is efficient if it maximizes producer surplus,
which is identical to minimizing production cost because producers
with lowers marginal cost will produce “first”.
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0

Quantity

Price

Competitive Supply
(Marginal Cost)

Demand

∑
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∗
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Figure C.1: Competitive Equilibrium. Dotted area is consumer surplus,
striped area is producer surplus.

In theory, the competitive equilibrium will occur “naturally” from
free trading between producers and consumers. In practice, supply
and demand is settled in some form of institutional context. Heavily
regulated electricity markets are centrally manged by a market oper-
ator and typically implement complex auction processes, [S6], [34],
[118]. Thus, the remaining sections of this chapter show how prices
that yield a competitive equilibrium can be obtained from a cost mini-
mization problem and what effect physical system requirements have
on the resulting prices.

c.3 marginal pricing

Consider an electricity market that is centrally cleared by a market
operator, who collects bids from producers in the form of cost func-
tions ci, i ∈ G and production limits pmax

G,i and seeks to minimize the
cost to supply demand pD. If all cost functions are convex, the fol-
lowing proposition holds. A brief discussion on non-convex markets
is provided in Box 5.

Proposition C.2 (System Marginal Pricing). Consider a convex market
clearing problem of the form

min
∑
i∈G

ci(pG,i) (C.8a)

s.t.
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(λ) :
∑
i∈G

pi,G = pD (C.8b)

(δ+) : pi,G 6 p
max
G,i ∀i ∈ G. (C.8c)

Let ({p∗G,i, δ
+∗
i }i∈G, λ∗) be the primal-dual optimal solution to (C.8). Then

λ∗ and
∑
i∈G p

∗
G,i are the price and quantity corresponding to the competi-

tive equilibrium of this market.

Proof. The Lagrangian function of (C.8) is:

L =
∑
i∈G

ci(pG,i) + λ(pD −
∑
i∈G

pG,i) +
∑
i∈G

(δ+i − pmax
G,i ). (C.9)

Solving

∂L

∂pG,i
= 0 (C.10)

for all i ∈ G leads to

λ∗ =
∂ci(pG,i)

∂pG,i

∣∣∣∣
pG,i=p

∗
G,i

+ δ+i ∀i ∈ G. (C.11)

The result in (C.11) recovers the optimal producer decision of Corol-
lary C.1 exactly when we set πp = λ∗. Thus, when all producers are
confronted with price πp = λ∗, their optimal production p∗G,i satisfies∑
i∈G p

∗
G,i = pD as per (C.8b), and their marginal cost of production

is equal to πp. We can now show that requirements of a competitive
equilibrium are met:

1. The market is cleared as per (C.8b).

2. The market is cleared efficiently, i.e. at minimal cost, as per
(C.8a).

3. Generators produce such that the price equals their marginal
cost of production plus a scarcity rent, as per (C.11), i.e. the
price is incentive compatible and producers will bid truthfully.

The price obtained as dual of the market clearing constraint (C.8b)
is called system marginal price.

Box 5 – On non-convexities.

System and locational marginal pricing through dual multipliers re-
quires a convex optimization problem that allows to invoke the KKT

optimality conditions as discussed in Appendix A. Two sources of non-
convexities that often arise in electricity markets are binary decision
variables and non-convex power flow equations.

Binary decision variables arise when generator cost functions and
physical limits require considerations of their status to capture, e.g. no-
load cost, minimum generation levels, start-up or shut-down cost. (An
OPF problem that includes binary variables to account for the on- or off-
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states of generators is typically called unit commitment problem.) The AC

power flow equations are non-convex per se and require some effort to
allow a feasible solution in an optimization problem, see Appendix B.

To enable marginal pricing, these non-convexities have to be miti-
gated via convex approximations, relaxations or reformulations. A com-
mon technique involves a two-stage solution process that first solves
the non-convex problem (“dispatch run”) and then uses the solution
as a basis for the second “pricing run” by either fixing the optimal bi-
nary variables, [88], or linearizing the problem around the first stage
solution, [193],[P4].

If no suitable convexification is possible, out-of-market uplift pay-
ments to ensure cost recovery or revenue adequacy may be neces-
sary,[211], [212].

c.4 locational marginal prices

A theory on how to establish an efficient market clearing mechanisms
in the context of a power network with physical constraints was pro-
posed in the 1988 edition of [120] as locational marginal prices (LMPs).
Consider a power network with a set of nodes (buses) N. To simplify
notations assume that each bus i ∈ N hosts a generator with cost
function ci and generation limit pmax

G,i and has a total load of pD,i.
The buses are connected by a set of arbitrarily oriented arcs (lines) L
and the power flow f

p
l , ∀l ∈ L is determined by a linear mapping

such that fpl =
∑
i∈N Bli(pG,i − pDi). (This linear mapping is de-

rived from the DC power flow equations as shown in Appendix B.)
Each line l ∈ L is characterized by a maximum capacity fp,max

l .

Proposition C.3. (Locational Marginal Pricing) Consider the convex mar-
ket clearing problem from Proposition C.2 with the additional requirement,
that the physical power flow does not exceed feasible transmission limits:

min
∑
i∈G

ci(pG,i) (C.12a)

s.t.

(λ) :
∑
i∈N

pG,i =
∑
i∈N

pD,i (C.12b)

(µ−l ,µ+l ) : − fp,max
l 6

∑
i∈N

Bli(pG,i − pD,i) 6 f
p,max
l ∀l ∈ L

(C.12c)

(δ+) : pi,G 6 p
max
G,i ∀i ∈ G.

(C.12d)

Let ({p∗G,i, λ
∗
i , δ

+∗
i }i∈N, {µ+∗l ,µ−∗l }l∈L) be the primal-dual optimal solution

to (C.12) and define λ∗i := λ −
∑
l∈L Bli(µ

+∗
l − µ−∗l ), ∀i ∈ N. Then

{λ∗i }i∈N and {p∗G,i}i∈N are sets of prices and quantities that constitute a
competitive equilibrium.
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Proof. The Lagrangian function of (C.12) is:

L =
∑
i∈G

ci(pG,i) + λ(pD −
∑
i∈N

pG,i) +
∑
i∈N

(δ+i − pmax
G,i )

+
∑
l∈L

µ+l (
∑
i∈N

Bli(pG,i − pD,i) − f
max
l )

+
∑
l∈L

µ−l (f
max
l −

∑
i∈N

Bli(pG,i − pD,i))

(C.13)

Solving

∂L

∂pG,i
= 0 (C.14)

for all i ∈ G leads to

λ∗ −
∑
l∈L

Bli(µ
+∗
l − µ−∗l ) =

∂ci(pG,i)

∂pG,i

∣∣∣∣
pG,i=p

∗
G,i

+ δ+i ∀i ∈ G.

(C.15)

The result in (C.15) recovers the optimal producer decision of Corol-
lary C.1 exactly when we set πpi = λ∗i = λ∗ −

∑
l∈L Bli(µ

+∗
l − µ−∗l ).

Thus, when all producers are confronted with price πpi = λ∗i , their op-
timal production p∗G,i satisfies (C.12b) and (C.12c), and their marginal
cost of production is equal to πpi . This meets the requirements of a
competitive equilibrium as shown in the proof of Proposition C.2.

Problem (C.12) is a DCOPF problem (see Appendix B) and prices
{λ∗i }i∈N are called locational marginal price. Note that λ∗i depends on
duals (µ+l ,µ−l ) of transmission capacity constraint (C.12c). If µ+i =

µ−i = 0, ∀l ∈ L}, i.e. transmission limits are not restrictive to the
solution of (C.12), then λ∗i = λ

∗, ∀i ∈ N.
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