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Abstract

Building performance simulation is most often used to improve the design and at
times the operation of buildings. Within a building model, the thermal character-
istics of the envelope and the HVAC (heating, ventilation, and air conditioning)
equipment are described by parameters that often cannot be estimated with high
accuracy (e.g., occupant behavior, building envelope and HVAC equipment per-
formance). These uncertainties in simulation input have a great influence on the
simulation results. An uncertainty analysis quantifies the result uncertainty given
the model input uncertainty. The aim of a sensitivity analysis is to attribute the
uncertainty in the model output to the uncertainty in the different model inputs.
Despite the benefits which these techniques can provide, uncertainty and sensitivity
analysis are not commonly applied in either design practice or scientific research.
In this thesis, a Monte Carlo based methodology for uncertainty and sensitivity

analysis is introduced. A significant reduction of computational expense and an
increased robustness was achieved by the application of a quasi-random sampling
technique (i.e., sampling based on Sobol′ sequences). Furthermore, a systematic ap-
proach for conducting the analyses is proposed. The methodology was implemented
in a tool that is applicable to most simulation programs and operating systems and
allows parallel computing.
Another common part of the design process of a building is a cost-benefit analy-

sis to compare design options and different scenarios. The results are also strongly
dependent on assumptions about uncertain economic parameters (e.g., future infla-
tion rates and energy costs). An overall methodology for uncertainty and sensitivity
analysis that combines building performance simulation and cost-benefit calculation
is developed and demonstrated.
The methodology is applied to three case studies to illustrate possible applications.

It can improve the design process or building operation and provides differentiated
information on these topics for decision-making.
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Kurzdarstellung

Gebäudesimulationen werden häufig während der Planung von Gebäuden eingesetzt.
Vereinzelt kommen sie auch für die Gebäudebetriebsoptimierung zum Einsatz. In-
nerhalb von Gebäudesimulationsmodellen wird die Charakteristik der Gebäudehülle
und der Anlagentechnik mittels Parametern beschrieben, die oft nicht genau be-
stimmbar sind (z.B. Nutzerverhalten, Spezifikation der Gebäudehülle und Anlagenef-
fizienz). Unsichere Randbedingungen haben einen großen Einfluss auf das Ergebnis
von Gebäudesimulationen. Eine Unsicherheitsanalyse quantifiziert die Ergebnisunsi-
cherheit in Anbetracht der unsicheren Eingangsgrößen. Das Ziel einer Sensitivitäts-
analyse ist die Identifikation des Anteils der Ergebnisunsicherheit, der den einzelnen
Eingangsgrößen zuzuordnen ist. Trotz der Vorteile bei der Anwendung dieser Metho-
den werden Unsicherheits- und Sensitivitätsanalysen bisher in der Planungspraxis
und auch in wissenschaftlichen Untersuchungen selten durchgeführt.
In dieser Arbeit wird eine Methodik zur Unsicherheits- und Sensitivitätsanalyse

vorgestellt, die auf einem Monte Carlo Ansatz basiert. Durch ein Verfahren zum Zie-
hen von Stichproben, das auf Quasi-Zufallszahlen beruht (Ziehen von Stichproben
auf der Basis von Sobol′-Sequenzen), kann der erforderliche Rechenaufwand signifi-
kant verringert und die Robustheit erhöht werden. Weiterhin wird eine systematische
Vorgehensweise bei der Anwendung der Analysen eingeführt. Die Methodik wurde
in eine Programmumgebung implementiert, die für die meisten Simulationsprogram-
me und Betriebssysteme anwendbar ist und eine Parallelisierung der Berechnungen
ermöglicht.
Ein weiterer üblicher Teil des Planungsprozesses von Gebäuden sind Wirtschaft-

lichkeitsberechnungen für den Vergleich von verschiedenen Planungsoptionen und
Szenarien. Die damit erzielten Ergebnisse hängen ebenfalls stark von den Annahmen
zu unsicheren wirtschaftlichen Randbedingungen ab (z. B. zukünftige Inflationsra-
ten und Energiepreise). Eine Methodik zur Unsicherheits- und Sensitivitätsanalyse
für die kombinierte Gebäudesimulation und Wirtschaftlichkeitsberechnung wurde
entwickelt und angewendet.
Die Gesamtmethodik wird für drei Beispiele angewendet, um Einsatzmöglichkeiten

darzustellen. Ihre Anwendung kann dazu beitragen, den Planungsprozess und den
Gebäudebetrieb zu verbessern und eine Entscheidungsfindung zu erleichtern.
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1 Introduction

1.1 Motivation

A large share of the overall energy demand is consumed in buildings. In Germany,
45% of the overall end energy consumption can be attributed to households, trade,
commerce and services (AG Energiebilanzen e.V., 2012). Moreover, the highest
energy saving potential of the European Union lies in the building sector (European
Commission, 2011). Reducing the energy consumption in buildings is commonly
stated to be very important in the literature (e.g., Henze et al., 2004; Choi Granade
et al., 2009; BMWi, 2011; Jacob, 2012). The underlying reasons for these statements
are: Saving energy protects resources (Hirsch et al., 2005), helps to prevent a drastic
climate change (IPCC, 2007) and possibly saves money (Tuominen et al., 2012). It
seems to be obvious that methods to support the reduction of energy consumption
in buildings are important in this context. Therefore, this thesis is focusing on
methods and a framework that supports the design and operation of energy-efficient
buildings.
Most people agree that energy-efficient buildings with advanced plant equipment

commonly necessitate a complex design process. The traditional approach to de-
sign buildings and HVAC (heating, ventilation and air conditioning) equipment uses
steady-state methods and worst-case scenarios. This is often not sufficient when
complex systems have to be investigated (Macdonald, 2002, p. 2). This situation
can be improved with building performance simulation (BPS) (Clarke, 2001, p. ix).
With BPS the partial load behavior as well as the interactions between plant equip-
ment and the building can be fully examined. Figure 1.1 provides an impression
of some of these manifold interactions. An integrated analysis (e.g., analysis with
BPS) is essential when net-zero-energy buildings or plus-energy buildings1 are de-
signed. Beside the application of simulation models in the design process, another
interesting area is employing simulations to improve the operation of buildings and
energy systems (e.g., Henze, 1995).
Although simulations are often used in building research and practice, uncertain-

ties in their results are hardly ever quantified (Macdonald, 2002, p. 2). One reason
1Over the course of a year, a net-zero-energy building produces the same amount of energy from
renewable energy sources as it imports from external sources. A plus-energy building produces
more energy than it imports over one year (Voss and Musall, 2011, p. 12). However, different
definitions exist and the interested reader is referred to Sartori et al. (2012).

1



1 Introduction

Figure 1.1: Energy flow paths in a building (source: Clarke, 2001, p. 6).

for this seems to be the lack of methodologies and tools which are applicable to the
problem of uncertainties in buildings. A mismatch between detailed and computa-
tionally expensive simulations on the one hand and crude parameter assumptions
according to some rules of thumb on the other can often be found in practice (Pfaf-
ferott and Herkel, 2008). This is misleading, as simulations sometimes introduce
pseudo-accuracy, creating a false sense of validity and engineering rigor. By exam-
ining the impact of uncertainties, it is possible to increase simulation quality and
thus the robustness of results. If a building simulation is considered to be a decision
support instrument, it is strongly advisable to assess and communicate the problem
of uncertainties properly. Otherwise decisions might be made which are based on
faulty or incomplete assumptions. This can lead to disappointment after completion
of the building if it does not perform as communicated during the design process.
With a classic building simulation, the answer to design questions is often either

2



1.1 Motivation

yes or no depending on the assumptions. An example for such a design question is:
Will the renewable energy system provide 20% of the total annual energy demand?
With an uncertainty analysis (UA), it is possible to answer design questions with
probabilities, e.g.: The probability of more than 20% energy supplied by the renewable
energy system is 80%. Figure 1.2 shows a comparison of the classic simulation
approach and the proposed approach. The classic approach has single numbers as
input and yields single numbers (e.g., specific annual energy consumption) with
unknown accuracy as output. The BPS approach with uncertainties indicates how
inputs might vary and quantifies the uncertainty in the result.

Figure 1.2: Classic building simulation approach versus building simulation ap-
proach with uncertainty analysis.

Furthermore, with the proposed approach it is possible to compare design options
and choose the option with the highest probability of reaching a specific goal. This
leads to robust design solutions that perform well within the input range that is
captured in the UA.
Another interesting question is the influence of different building components,

HVAC equipment and control strategies on the energy consumption or operating

3



1 Introduction

cost (e.g., Clarke, 2001, pp. 285-298). A sensitivity analysis (SA) can answer this
question. A UA often goes hand in hand with an SA. In this combination, the aim
of an SA is to attribute the uncertainty in the model output to the uncertainty in
the model input (Saltelli et al., 2008, p. 1). Sensitivity analyses can also be applied
to model reduction and optimization problems (Eisenhower et al., 2012b). Typical
questions that can be answered with SA are: Which simulation input has the greatest
influence on the result?; Which model input (i.e., input argument) should be varied
by an optimization algorithm?; Which model variables or parameters have the least
influence and hence can be neglected when simplifying the model?
A further common task in the design process of a building is a cost-benefit analysis

(CBA) to compare design options and different scenarios (Miller, 2005, p. 418).
The results are also strongly dependent on assumptions about uncertain economic
boundary conditions (e.g., future inflation rates and energy costs). UA and SA can
also be applied to CBA. Furthermore, it is possible to perform a UA and SA for a
combined BPS and CBA and use the results to support decisions.

1.2 Hypotheses

Monte Carlo (MC)-based techniques for UA and SA are best suited for BPS. Quasi-
random sampling techniques (i.e., sampling based on Sobol′ sequences) require fewer
simulations until convergence of the MC simulation. Furthermore, they produce
more robust results than other sampling strategies. By using parallelization, it is
possible to further reduce the time required for a UA and SA. The results of a UA
can be presented such that decision makers can easily interpret them. Furthermore,
the results provide a significant benefit compared to simulations with single-value
estimates. Performing UA and SA for combined building performance and cost-
benefit analyses can provide valuable insights.
BPS has a wide range of applications. A single best method for SA does not

exist. However, a combination of scatter plots, the elementary effects method, the
variance-based method and Monte Carlo filtering is applicable for most cases. All
methods can be applied consecutively or single methods can be selected on the basis
of project requirements.

1.3 Literature Review

The uncertainty of simulation results can have various causes and different classifi-
cations exist (Kennedy and O’Hagan, 2001). It is important to distinguish between
the different sources of uncertainty because the nature of the uncertainty determines
the way it can be quantified (Hopfe and Hensen, 2011). De Wit distinguishes be-
tween specification, modeling, numerical and scenario uncertainty (de Wit, 2003, p.

4



1.3 Literature Review

29). The specification and the scenario uncertainty can be summarized as model
input uncertainty. In the following, three sources of uncertainty are distinguished:
model uncertainty, numerical uncertainty and model input uncertainty.
It is understandable that in (BPS) practice, the different sources of uncertainties

can influence each other because of trade-off effects. An example is that many
building models are very detailed to reduce the model uncertainty. At the same
time, this can introduce an increased model input uncertainty because the models
require information which is not always available in the desired accuracy.

1.3.1 Model Uncertainty

Every model is an approximation to reality and hence model uncertainty is always
present (de Wit, 2003, p. 29). A BPS consists of models for different phenomena
such as heat transfer through building components, infiltration and air change, and
models for HVAC components and their controls. The model uncertainty depends
on the complexity of the analyzed problem and how accurately the model captures
reality.
Different model validation standards and procedures exist. The best validation

for a simulation program or model obtained is by comparison with measured data.
However, this is not the standard procedure because appropriate measurements are
costly. Many existing validation standards require the comparison of results from the
model that is to be validated with the results of other simulation models or programs.
Examples for this can be found in VDI 6020 Part 1 (2001) and ANSI/ASHRAE Stan-
dard 140 (2011). Many validated simulation programs and models are available for
BPS. Several BPS programs are validated against ANSI/ASHRAE Standard 140
(2011). When this standard is applied, the results of a simulation program or model
for several test cases are compared with the results of other simulation programs.
These reference programs are considered to be reliable. Examples for programs or
models that were subjected to the validation procedure of ANSI/ASHRAE Stan-
dard 140 include IDA ICE (Equa Simulation AB, 2010), Modelica Buildings library
(Nouidui et al., 2012), EnergyPlus (Henninger and Witte, 2012) and WUFI Plus
(Antretter et al., 2011).
Different test cases are defined in the validation standards, where all the necessary

input and information on boundary conditions are provided. Figure 1.3 illustrates
a test case from the ANSI/ASHRAE Standard 140 (2011).
All test cases were modeled with the reference simulation programs and the results

are provided. To analyze the variability of different BPS programs, the results for
the annual heating energy of one test case are presented (Figure 1.4). There are
differences among the results. The mean value of all results is 5.090 MWh whereas
the minimum value is 4.296 MWh and the maximum value is 5.709 MWh. Figure
1.4 contains a box plot of all results. The box represents the data from the lower

5



1 Introduction

Figure 1.3: ANSI/ASHRAE Standard 140 reference case 600 (source:
ANSI/ASHRAE Standard 140, 2011, p. 16).

quartile to the upper quartile and the median is also indicated. The height of the
box is the interquartile range. The maximum length of the whiskers is 1.5 times
the interquartile range2. The differences among the results in Figure 1.4 show that
model uncertainty3 is present when BPS programs are applied.
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Figure 1.4: ANSI/ASHRAE Standard 140 reference results (data source:
ANSI/ASHRAE Standard 140 (2011)).

2More details about these statistics will be presented in Section 2.2.2.1.
3It is uncertain whether all result differences are attributable to model uncertainty. Different
program interfaces and different analysts might also have contributed to these differences.

6



1.3 Literature Review

1.3.2 Numerical Uncertainty

Numerical uncertainties are present, when (mathematical) models are solved by com-
puters. All variables and parameters of a simulation model are stored in a computer
number format, which is the representation of a value (e.g., real number). Due to
limitations of memory capacity, all real numbers need to be rounded when stored on
a computer and this introduces uncertainties. The floating point arithmetic used in
computers is only an approximation to exact arithmetic (Jézéquel and Chesneaux,
2008). However, because of the performance of modern computers and the accuracy
requirements of typical BPS, the uncertainty introduced in this way is negligible in
most cases.
Another source of numerical uncertainty is the fact that computer simulations

commonly apply iterative numerical methods to solve the systems of equations and
to run the simulation. Every solver introduces uncertainty depending on its type
and selected settings, such as tolerance or simulation step size (i.e., discretization
errors).
The numerical uncertainties are specific to the program used for BPS. By an-

alyzing the different sources of uncertainty, de Wit comes to the conclusion that
the influence of numerical uncertainty can be neglected (de Wit, 2003, p. 29). His
arguments stress that the chosen discretization and time steps can be selected such
that this uncertainty is insignificant.

1.3.3 Model Input Uncertainty

Model input uncertainties comprise all uncertainties related to the determination of
the parameters, variables and boundary conditions of the model. Equation 1.1 is
introduced to illustrate model input uncertainties. It is the differential equation for
a simple building simulation model.

C
dTi
dt

= (Htr + V̇ve cp ρair)(Te − Ti) + Q̇int + Q̇sol + Q̇heat (1.1)

with
dTi
dt

= f(Ti) ; Ti(t = 0) = Ti,0

In Equation 1.1, C is the heat capacity, Ti is the internal temperature, t is the
time, Htr is the heat transfer coefficient, V̇ve is the ventilation flow rate, cp is the
specific heat capacity of the air, ρair is the density of the air, Te is the outside air
temperature, Q̇int is the internal heat gain, Q̇sol is the solar heat gain and Q̇heat is
the heat delivered by any HVAC component. Model input uncertainties can affect
almost every term of the equation. These include specifications of the building
envelope (C, Htr) and the HVAC equipment (Q̇heat, V̇ve if an air handling unit is
installed), meteorological data (Te, Q̇sol) as well as occupancy (V̇ve if windows can

7



1 Introduction

be opened, Ti if the set point temperature can be adjusted, Q̇sol if blinds can be
operated).
A correct quantification of the input uncertainties is essential to obtain reliable

results by performing UA and SA. Appropriate probability distributions and associ-
ated parameters are required. Depending on the project stage at which a simulation
study is conducted, knowledge about the uncertainty varies and hence the approach
to quantifying the input uncertainties. In the case of BPS, several types of model
input uncertainties exist. Hopfe and Hensen (2011) distinguish between physical
(e.g., material properties), design (e.g., geometry) and scenario (e.g., occupancy)
uncertainties. Almost every BPS model has uncertain input parameters and vari-
ables4. The aim is to quantify the input uncertainty of influential parameters and
variables and take the uncertainty into account when calculating and analyzing the
output.
Uncertainties in a BPS context are introduced in the following case studies that

address model input. Lomas and Eppel (1992) conduct a study on SA for building
simulations. They compare different SA methods and analyzed over 70 uncertain
inputs. Beside other methods, they also use MC techniques. An MC simulation is
performed by re-running the simulation several times with different input parameters
that are sampled according to a probability density function (PDF). The results of
all of these simulations can be used to obtain a joint PDF for the result. In this way,
it is possible to analyze the likely variation of the output given the uncertain set of
inputs5. Macdonald and his co-workers compare different techniques for uncertainty
quantification and implemented some methods in a simulation program (Macdon-
ald and Strachan, 2001; Macdonald, 2002; Macdonald and Clarke, 2007). De Wit
states that it is essential to communicate uncertainties to decision makers. In build-
ing simulation practice however, an explicit assessment of uncertainty is more the
exception than the rule. Therefore, most of the decisions are based on single-value
estimates (de Wit, 2003, p. 25). De Wit and Augenbroe (2002) analyze uncertainties
in building design mainly related to thermal comfort. They identify uncertainties
in ventilation rates and indoor air temperature distribution as highly influential on
the simulation result. Furthermore, they propose a method for decision making in
building design. Mara and Tarantola (2008) perform an SA for a test cell model and
focus on the application in model development. They analyze the sensitivity of sim-
ulation input using a variance-based method. Eisenhower et al. (2011) conduct a UA
and SA investigating the influence of about 1,000 parameters using quasi-random
sampling and a meta-model (response surface). Hopfe and Hensen (2011) report
results of an MC-based UA and SA implemented with Latin hypercube sampling

4A parameter has a constant value during the simulation (e.g., window area) and a variable changes
over time (e.g., heating power).

5More details on MC simulations will be presented in Chapter 3.
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(LHS). In their work, the physical uncertainty analysis was conducted by varying
physical properties of materials, while the design uncertainty analysis was accom-
plished by adjusting geometry and glass surface areas. The scenario uncertainty was
represented by varying the infiltration rate and internal loads. Booth et al. (2011)
perform a UA of housing stock models using Bayesian techniques. Their aim is to
analyze different retrofit options at an urban scale.

The literature introduced so far reveals that one commonly applied approach
for UA and SA in BPS is based on MC techniques. However, it is also possible
to reformulate models in a way that they can take PDFs as input and compute
a PDF as output rather than producing single-value estimates of the simulation
output. A study conducted by Jacob et al. (2011) shows that this method requires
extensive mathematical modeling efforts and more computational resources than
MC techniques for a given accuracy and building problem.

Wong et al. (2005) review research activities concerning intelligent buildings. One
part of this review is the evaluation of investments and CBA is mentioned as a com-
mon technique. Wong et al. point out that the analysis of uncertainties in a CBA
is important but not common practice in building design. As a reason for this they
mention the lack of methods for this type of analysis. The international standard
EN 15459 Energy performance of buildings - Economic evaluation procedure for en-
ergy systems in buildings contains specific information on calculation methods, cost
types (e.g., maintenance cost) and typical life spans for HVAC equipment (DIN EN
15459, 2008). However, it does not contain information concerning UA for economic
evaluations. Rysanek and Choudhary (2011) conduct an analysis where they com-
bine building simulation and economic calculations. The economic uncertainties are
explored with best-case and worst-case scenarios and different refurbishment op-
tions are analyzed by changing the technical system in the building simulation. Heo
(2011) analyses different retrofit options by quantifying the uncertainty in the simple
payback time (i.e., investment cost for retrofit divided by annual energy saving) of
different energy saving measures.

The literature review reveals that several studies concerning UA and SA for BPS
have been conducted. The approaches of previous work vary significantly depend-
ing on the analyzed application. An important aspect is the quantification of the
input uncertainty because it is the prerequisite for every UA and SA. A general
methodology for different applications that includes all necessary steps to conduct
a UA and SA for BPS does not exist. Furthermore, quality assurance aspects such
as convergence testing are often not addressed. The definition for and distinction
between UA and SA varies in the BPS-related literature. Most literature is about
the application concerning building design, whereas building operation aspects are
hardly ever analyzed. Furthermore, a general methodology for conducting a UA and
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SA for a combined BPS and CBA has not been found in the literature6.

1.4 Purpose of Research and Objectives

Based on the findings above, the objectives of this thesis are derived in the following.
The features and capabilities of available BPS programs are diverse and for some

questions (e.g., analysis of heat and moisture transfer in the building envelope ele-
ments) only a few simulation programs can be applied. Analyzing the uncertainty
in the results that is introduced by different simulation models or programs is very
specific to the individual case and hence not the focus of this thesis. In the context
of this thesis, it is assumed that the available BPS programs produce reliable results.
Also, the numerical uncertainty (i.e., solver tolerances and round-off errors) is

not analyzed any further in the context of this thesis. However, the modeler has to
ensure the applicability of the solver and the solver settings to the analyzed problem.
The main focus in this thesis is on model input uncertainties since these uncertain-

ties have the greatest influence on the model output among the sources of uncertainty
that are independent of the simulation program. Different techniques for UA and
SA will be investigated. The aim is to develop a unified approach which is appli-
cable to typical BPS and common questions in building design and operation. One
important aspect is the scalability of the approach, depending on the requirements
of the analysis and the questions to be answered. Because of the aim to develop a
program-independent and scalable methodology, the structure of BPS models7 and
the findings presented in Jacob et al. (2011), the focus of this thesis is on MC-based
techniques. One objective is to review the current state of the art concerning UA
and SA applied to BPS. Furthermore, methods for UA and SA are taken from other
disciplines, analyzed with respect to the applicability for BPS and modified where
necessary. Best practices are identified and quality assurance aspects (e.g., conver-
gence) are highlighted. A methodology to perform UA and SA with BPS models is
developed. Practical limitations and ways to overcome them are discussed.
Another aspect is UA and SA for combined BPS and CBA and how this can

improve decision-making processes. This is relevant because in practice many deci-
sions are based on their monetary implications. It seems to be natural to talk about
different options in the design phase in terms of money. BPS and CBA are linked
because the results of a BPS influence the results of a CBA (e.g., the energy supplied
by a solar thermal collector influences the cost effectiveness of the solar thermal sys-
tem). Furthermore, the results of CBA are also heavily dependent on assumptions
about uncertain economic parameters (e.g., future inflation rates and energy costs).
It is analyzed whether and how the two analyses can be combined in a UA and SA

6An exception is the paper that Burhenne et al. (2013a) published in the context of this thesis.
7BPS models can be nonlinear, non-additive and they can have discontinuities.
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setting and how this can aid a typical decision-making process. A further question
is whether a significant benefit can be obtained when the methodology is applied to
typical BPS applications. The thesis aims to provide comprehensive guidance for
applying UA and SA.
Based on the aspects mentioned above, the research questions are:

(I) What are the statistical foundations for UA and SA and how can the input
uncertainty be quantified?

(II) Which methods for UA and SA are most applicable for BPS and can they be
combined to obtain a general methodology?

(III) Is it possible to develop a methodology to perform UA and SA for a wide range
of BPS applications?

(IV) How can UA and SA be performed for a combined BPS and CBA?

(V) Which benefit to typical BPS can be provided by UA and SA?

1.5 Structure of the Thesis
This thesis consists of a chapter that introduces the statistical fundamentals (Chap-
ter 2), two main chapters on uncertainty analysis and sensitivity analysis (Chapter
3 and Chapter 4) and an application chapter (Chapter 5). Each of the Chapters 2
- 4 deals with a separate topic of the overall methodology and includes a detailed
literature review in addition to the review presented in the introduction. These
separate reviews do not concern only the application of the analyzed methods in
the context of BPS but discuss methods and approaches applied in other disciplines.
The reason for separating the different topics is to ensure clear differentiation be-
tween the analyzed aspects. Furthermore, the different steps of the methodology
(UA, SA) can be applied independently of each other and are therefore presented in
separate chapters. The links between the chapters are analyzed and illustrated in
the application chapter.
Chapter 2 on "Statistical Fundamentals and Uncertainty Quantification for Simu-

lation Input" introduces the statistical foundations as prerequisite for the remaining
parts of the thesis. Furthermore, methods to analyze data and quantify uncertain
simulation input are introduced. Parameter uncertainties are investigated as well
as uncertainties in simulation variables. BPS input is the main focus. However,
methods to quantify uncertain input for a CBA are also investigated.
In Chapter 3 addressing "Uncertainty Analysis", different methods for generating

random numbers are analyzed with respect to their convergence and robustness
properties. Furthermore, techniques to analyze the results of an MC simulation are
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examined and tested. Another important aspect in this chapter is the visualization
of the results. As a case study, a residential building with solar thermal collectors
is investigated.
Different SA techniques are introduced in Chapter 4 on "Sensitivity Analysis".

The most applicable SA methods are combined to develop an SA methodology for
BPS. The case study is the application of SA in the operation phase of a large scale
office building.
In Chapters 2 to 4, different parts of the overall methodology are introduced and

developed. In Chapter 5, "Application to Residential Building Design", all parts
are applied together to an example. A UA and an SA for a combined building
performance and cost-benefit analysis are performed. In this case study, the best
design options with respect to energy performance and cost efficiency are identified,
taking uncertainties into account.
In Chapter 6, "Conclusions", the results of the thesis are discussed. The methodol-

ogy is summarized and recommendations concerning practical application are given.
Furthermore, future work and potential for enhancement are identified.
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2 Statistical Fundamentals and
Uncertainty Quantification for
Simulation Input

2.1 Background and Objectives

This chapter introduces the statistical fundamentals and the tools used. Further-
more, model input uncertainties and their quantification are analyzed. A method-
ology for uncertainty quantification (UQ) for BPS and CBA input is proposed.

2.1.1 Literature Review

This literature review focuses on UQ for simulation input. The statistical funda-
mentals are introduced in Section 2.2.2. According to Saltelli and Tarantola (2002),
the quantification of input uncertainty can be based on measurements, estimates,
expert judgment, physical bounds, output from simulations and analogies to similar
simulation input.
Macdonald applies measurement theory to distinguish between systematic and

random errors and the resulting uncertainties. As an example for a systematic er-
ror, he mentions the usage of incorrect data for a given parameter or employing an
inappropriate model for a physical phenomenon (Macdonald, 2002, pp. 86-88). The
latter example does not correspond to the classification approach used in this thesis.
Macdonald points out that one source of random errors is measurement error. As
an example for a random error he uses the characterization of uncertainty in ther-
mophysical properties and suggests to use the measurement error to quantify their
random uncertainty. To express the overall uncertainty in a parameter he suggests
describing the systematic and random uncertainties in a simulation parameter with
a probability distribution. Furthermore, he introduces several distributions for BPS
input. These are: discrete distribution, uniform distribution, normal distribution,
log-normal distribution and triangular distribution (Macdonald, 2002, pp. 88-96).
It is illustrated how the uncertainty can be quantified for three typical BPS in-
puts, thermophysical properties, internal gains and infiltration rates, by analysis of
existing data and detailed modeling (Macdonald, 2002, pp. 96-116).
De Wit points out that in a first step, the uncertainty for the simulation inputs
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can be quantified by using information from literature, experiments, model calcu-
lations, rules of thumb, and experience (de Wit, 2003, p. 31). He uses a two-step
procedure, where a rough estimate of the input uncertainty is assigned and in the
second step the UQ might be updated (de Wit, 2003, p. 31). He separates parameter
and scenario uncertainties. In the case of parameter uncertainties, his quantifica-
tion approach is illustrated with three parameter types (i.e., uncertainty in physical
properties of materials and components, uncertainty in wind pressure coefficients
and uncertainty in air temperature stratification) (de Wit, 2003, pp. 34-39). De
Wit also takes dependence between parameters into account. This is done by treat-
ing a parameter as either independent or perfectly positively correlated. Uncertainty
in the physical properties of materials and components is quantified on the basis of
literature. The variation in wind pressure coefficients is analyzed by calculating
the pressure coefficients with different tools, where the different results are used to
compute lower and upper bounds. For the air temperature stratification he refines
a BPS model so that it can take the temperature stratification into account and
considers the vertical temperature gradient to be uncertain. Based on literature
values, he varies the gradient in an MC simulation. Scenario uncertainties such as
climate conditions and occupancy profiles are not investigated in his study (de Wit,
2003, pp. 34-39). Because no further information was available, de Wit assumes
that all parameters are normally distributed and the ranges derived from literature
and inter-tool comparison were interpreted as the 95% central confidence interval.
The UQ for wind pressure coefficients is refined by an expert judgement study. This
expert judgement is based on procedures described by Cooke and Goossens (2000).
In his example the following steps were conducted: selection of the experts in the
field of interest, training of the experts, answering of the questionnaire, elicitation
meeting, analysis and combination of the experts’ answers (de Wit, 2003, pp. 34-39).
As mentioned before, Hopfe and Hensen (2011) distinguish between three types of

simulation input uncertainties (physical, design and scenario uncertainties). The sce-
nario uncertainty includes internal and external boundary conditions. Hopfe assigns
normal distributions to the uncertain parameters and uses literature to determine
their standard deviation (Hopfe, 2009, p. 38). Furthermore, it is stated that the
uncertainties in physical, design and scenario parameters are analyzed separately
(Hopfe, 2009, p. 46).
Eisenhower et al. (2011) performed UA and SA for a BPS where they assumed

more than 1,000 parameters to be uncertain. Because of this large number of uncer-
tain parameters, they used a uniform distribution for all non-zero parameters and
an exponential distribution for parameters with zero as the nominal value.
Assumptions concerning occupancy and the occupants’ behavior are highly uncer-

tain. According to the experience of many building operators and literature (e.g.,
Page et al., 2008; Brohus et al., 2009; Haldi and Robinson, 2011), the occupants
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2.2 Methodology

have a significant influence on building performance1.

2.1.2 Objectives

The objective is to develop a methodology for input UQ that meets the requirements
of typical BPS applications. Criteria are the applicability with respect to available
information and accuracy requirements. Hence, the methodology should be scalable
depending on project requirements and constraints. Best practice will be identified
by analyzing existing work in the BPS context as well as from other scientific fields.

2.2 Methodology

2.2.1 Tools

The tools used throughout this thesis are introduced in the following subsections.
For applicability reasons, it is important that the developed methodology works
with a variety of existing BPS programs. Many different simulation programs exist.
Some of them were specifically developed for BPS (e.g., IDA ICE, ESP-r, Energy-
Plus, TRNSYS, WUFI Plus) and others are more generic but also used for buildings
(e.g., Dymola/Modelica, MATLAB/Simulink, IDA SE). The decision about which
tool is used in a specific project is based on the questions to answer2, the experi-
ence of the modeler, license costs, and many other aspects. The majority of the
programs mentioned above are not designed to perform statistical analyses, to run
MC simulations and to perform simulation in parallel on computer clusters. Doing
this requires some additional tools which are used together with the simulation pro-
grams. These tools belong to the simulation tool chain and are used before, parallel
to and after the simulation (e.g., pre-processing and post-processing of simulation
input and results). Many tools exist for performing these tasks also (e.g., MATLAB,
R, Python, awk etc.).

2.2.1.1 R

R is a language and a program for statistical computing and graphics. R runs on
different operating systems and is available as free software under the GNU General
Public License (R Core Team, 2012). In this thesis, R and several R packages
are used for generating samples, performing statistical computations and arithmetic

1Moreover, the indoor conditions have significant influence on the occupant’s performance but this
is beyond the scope of this thesis.

2The application can range from building envelope and/or HVAC design, controls design, opti-
mization of the building operation to the calculation of heat and moisture transport in building
components.
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calculations, managing parallel simulations on different processor cores, processing
simulation input and output and result visualization. R can be used to perform
a UA and SA with most BPS programs3. A further selection criterion is that it
is available for different operating systems (e.g., Microsoft Windows, Mac OS X,
Linux).

2.2.1.2 Modelica/Dymola

Modelica can be used to model differential algebraic equations (DAE). The general
representation of a DAE is

0 = f (t, ẋ(t),x(t),y(t),u(t),p) (2.1)

where t is the time, ẋ(t) is the vector of differentiated state variables, x(t) is the
vector of state variables, y(t) is the vector of algebraic variables, u(t) is the vector
of input variables and p is the vector of parameters and/or constants. The Modelica
language is non-proprietary, equation-based and object-oriented (Modelica Associa-
tion, 2012). A wide range of physical systems can be modeled with Modelica. Many
Modelica libraries can be used to perform modeling tasks and contain various mod-
els that can serve as a basis for the modeling. The basis of most libraries is the
Modelica Standard Library (MSL). Since Modelica is a language but not a program,
an environment is required to perform the simulation. Several commercial and freely
available simulation environments exist for Modelica. In the context of this thesis,
the commercial program Dymola is used (Dassault Systèmes AB, 2011). Modelica
was used in this thesis because it is a promising modeling approach4 and well suited
for models of different complexity used in an MC setting. The interested reader is
referred to Burhenne et al. (2013b) for further information concerning Modelica in
a BPS context.

2.2.2 Data Analysis

In the following sections, a methodology for quantifying the model input uncertainty
is developed.
A database that provides estimates for a wide range of uncertain inputs for BPS

does not exist (de Wit, 2003, pp. 25-26). Since each building and its usage is
unique, such a general database for all input uncertainty types would be difficult

3The prerequisite is that the simulation program has text files in which the simulation input is
specified and an executable file that takes these input files and performs the simulation.

4During the time this thesis was written, Modelica gained importance in the building simulation
community, resulting in the approval of an Annex of the International Energy Agency (IEA),
under the implementing agreement on Energy Conservation in Buildings and Community Sys-
tems (ECBCS). The Annex 60 has the title New generation computational tools for building and
community energy systems based on the Modelica and Functional Mockup Interface standards.
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to develop. Possible sources of information used in the developed methodology are
physically based information on bounds and modes, literature, expert knowledge,
and measurements. This is based on several other studies (Saltelli and Tarantola,
2002; Cooke and Goossens, 2000; Macdonald, 2002; de Wit, 2003) and adaptations
are made.

2.2.2.1 Statistics

Statistics is the name of a discipline and at the same time the name of the measures
applied within this discipline. In descriptive statistics, statistical methods are used
to describe collected data (i.e., a sample). When these measures are used to derive
inferences about the underlying population, this is called inferential statistics.
In this section, several statistics to characterize data are introduced. Most impor-

tant are measures of location (e.g., arithmetic mean) and measures of spread (e.g.,
standard deviation or variance). If relationships between different variables are of
interest, measures of linear dependence can be applied (e.g., covariance or correla-
tion coefficient) (Box et al., 2005, pp. 24-39). Some of these measures can be used
as parameters for probability distributions (see Section 2.2.2.2).
A different notation is used for statistics that describe a population and statistics

for a sample of a population. The mean of a population is a population parameter
and the mean of a sample (i.e., arithmetic mean of all sample elements (X̄)) is an
estimator of the population parameter. This is also true for the standard deviation
and other statistics. In the following the notation and equations for samples are
used. The arithmetic mean can be calculated by the equation

X̄ = 1
N

N∑
i=1

xi (2.2)

where N is the sample size and xi is an element of the sample (Saltelli et al., 2008,
p. 59).
The variance of a sample (X) can be calculated by (Saltelli et al., 2008, p. 59)

Var(X) = 1
N − 1

N∑
i=1

(xi − X̄)2 (2.3)

and the standard deviation is

StdDev(X) =
√

Var(X). (2.4)

The covariance can be used to analyze if a linear dependence between two variables
exists and can be calculated according to

Cov(X,Y) = 1
N − 1

N∑
i=1

(xi − X̄)(yi − Ȳ ) (2.5)
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with X and Y being the samples of two stochastic variables (Box et al., 2005, pp.
37-38). A value that is easier to interpret is the Pearson correlation coefficient. That
is (Box et al., 2005, pp. 37-38)

rXY = Cov(X,Y)
StdDev(X) StdDev(Y) . (2.6)

It is important to take into account that the covariance and the coefficient of
correlation are only meaningful for linear dependence between two variables. A
nonlinear dependence cannot usually be detected or represented by these measures5.
In addition to the introduced statistics, quantiles are commonly applied in data

analysis. Quantiles are the set of nsub − 1 values which separate the data into
nsub different subsets (Montgomery and Runger, 2003, p. 698). The median (also
called 2-quantile) is the value that divides the sample into two equally sized subsets
(i.e., half of the values above and half below the median). If the sample size is
even, the median is the arithmetic mean of the two central values (Montgomery and
Runger, 2003, pp. 200-201). The median is particularly helpful when the data is not
symmetrically distributed and outliers bias the mean value. Quartiles (also called
4-quantiles) implement a similar concept but divide the data into four equal parts.
Approximately 25% of the values of the sample are below and 75% are above the
first (also called lower) quartile. The second quartile is the median and the third
(also called upper) quartile separates approximately 75% of the values of the sample
below it and 25% above it (Montgomery and Runger, 2003, pp. 200-201). Several
specialized quantiles exist (e.g., percentiles that are 100-quantiles). In addition to
the quantiles, the minimum and the maximum values provide valuable information
on the sample range.

2.2.2.2 Probability Distributions

Uncertainties in simulation input are commonly quantified with the help of probabil-
ity distributions. Many different distributions exist and they can be separated into
discrete (e.g., discrete uniform distribution) and continuous distributions (e.g., nor-
mal distribution). Evans et al. (2000) describe 40 different distributions. However,
as many people may have observed, in most cases only three of them are used. These
popular distributions are the uniform, the normal and the log-normal distributions.
This popularity does not indicate that the selection of one of these distributions is
the best choice for all cases where they are applied. However, in many cases it is
done because most analysts are more familiar with these distributions than others
and relatively little information is required to fit them to data. The selection of a
distribution depends on the characteristics of the uncertainty and available infor-
mation (e.g., measurements). In this section, some general properties on discrete

5Some exceptions exist (e.g., Y = X3).
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and continuous distributions are introduced briefly. Many statistical tests exist to
analyze whether data can be described by a certain distribution or not and some of
them will be introduced.
For a probability mass function (PMF) of a discrete random variable X with

possible values x1, x2, ..., xN (Montgomery and Runger, 2003, p. 62)

N∑
i=1

p(xi) = 1. (2.7)

The expected value of a discrete random variable X is (Montgomery and Runger,
2003, p. 66)

E(X) =
∑
x

x p(x). (2.8)

The variance of discrete random variables is (Montgomery and Runger, 2003, p.
66)

Var(X) =
∑
x

x2p(x)− E(X)2. (2.9)

For continuous random variables∫ +∞

−∞
p(x) dx = 1 (2.10)

where in the continuous case p(x) is the probability density function (PDF) (Mont-
gomery and Runger, 2003, p. 99). The probability that a variate6 lies in the range
between a and b is the integral over the range a to b (Evans et al., 2000, p. 12). The
expected value for continuous random variables is (Evans et al., 2000, p. 14)

E(X) =
∫ +∞

−∞
x p(x) dx. (2.11)

The variance of continuous random variables is (Evans et al., 2000, p. 14)

Var(X) =
∫ +∞

−∞
(x− E(X))2 p(x) dx. (2.12)

Overview of Distributions

In Table 2.1, some distributions and their possible application in a BPS context
are introduced. The application examples are partly taken from Macdonald (2002).
More information on these and other distributions and the corresponding references
can be found in Appendix A.1.

6A variate is an outcome of a statistical experiment.
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Table 2.1: Probability distributions and possible application in BPS context.
Distribution Type Parameters Application examples
Discrete
uniform
distribution

Discrete a, b State or model selection,
number of occupants

Uniform
distribution

Continuous a, b Poorly defined parameters,
random number generation

Normal
distribution

Continuous µ, σ Measured physical data

Log-normal
distribution

Continuous θ, ω2 Parameters that cannot be
negative (e.g., air change
rate, metabolic rate of oc-
cupants)

Triangular
distribution

Continuous a, b, c Data with a distribution
between uniform and nor-
mal distributions

Empirical Distributions

In the case that sufficient measurements are available, the measurements themselves
may be used to compute an empirical distribution. Empirical distributions are
introduced because they are useful in the context of UA and SA and often used
throughout this thesis7. The PDF can be directly estimated from the sample data
with kernel density estimates8. Therefore, assumptions about the algebraic form
of the distribution model are not necessary (Evans et al., 2000, pp. 65-70). The
advantage is that the analyst does not have to assign a probability distribution
and test its applicability. However, a sufficient amount of data has to be available
to obtain reasonable results. In cases where many uncertain variables have to be
characterized and enough measurements are available, the application of empirical
distributions is an advantage because the computation of the kernel density estimates
can be automated. It is possible to use empirical cumulative distribution functions
(ECDF) to draw samples in an MC sampling. This step will be further explained
in Chapter 3.
Figure 2.1 shows an PDF based on empirical data9 and an ECDF10 coming from

7Empirical distributions proved to be especially useful for analyzing the results of an MC simulation
(see Chapter 3).

8Kernel density estimation can be used to estimate a PDF in a non-parametric way.
9The R function density() is used to compute the kernel density estimates.

10The R function ecdf() is used to compute the empirical cumulative distribution function.
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a sample that is generated with a random number generator11 according to N(0, 1)
and with a sample size (N) of 1,000. N(0, 1) is the standard normal distribution
(µ = 0 and σ = 1). The normalized histogram12 of the data is plotted in the same
graph as the PDF.
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Figure 2.1: PDF and ECDF of a sample.

Distribution Selection

Several distributions were introduced in the previous section. The selection of the
"right" distribution for the available data is an important task. Several statistical
tests exist to test whether data13 can be characterized by a certain distribution.
Visual inspection of the histogram of the data can be misleading and should al-
ways be complemented by other techniques. Quantile-Quantile plots (Q-Q plots)
are a graphical technique to test whether data comes from a certain probability
distribution. Some software packages support Q-Q plots to test data for different
distributions (e.g., R Core Team, 2012). Alternatively, reference data can be gen-
erated by a pseudo-random number generator14. The quantiles of the data to be
tested and the quantiles of the reference data are plotted against each other. Figure
2.2 shows an example of a Q-Q plot of data that is generated with a random number
generator according to N(0, 1) and with a sample size (N) of 1,000. The plot reveals
that the data is normally distributed.
11The R function rnorm() is used to draw the sample.
12More details on histograms can be found in Section 3.2.3.
13The tests can also be applied to analyze the results of an MC simulation.
14More details on random number generation will be presented in Chapter 3.
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Figure 2.2: Q-Q plot.

The Kolmogorov-Smirnov test is a test to compute the maximum distance (D)
between CDFs (Hoel, 1966, pp. 345-349). Another result of the test is the p-value.
This value is the probability that the test will take on a value for D that is at
least as extreme as the observed value of the statistic when the null hypothesis15

is true (Montgomery and Runger, 2003, p. 292). Commonly the null hypothesis
is that data comes from the same distribution. In case the p-value is below the
chosen significance level (α), the null hypothesis is rejected and the two different
data sets do not come from the same distribution. A widely used significance level
is 0.05. If the p-value is below this threshold, the two distributions are significantly
different. Some software packages support Kolmogorov-Smirnov tests for different
distributions16 (e.g., R Core Team, 2012). The test result17 for the sample that is
used in Figure 2.2 is D = 0.0191 and p-value = 0.8604. This test result indicates
that the data is normally distributed.

2.2.2.3 Dependence between Simulation Inputs

Depending on the applied model or simulation program, the dependencies have
to be treated by the modeler who performs a UA or SA or the model contains the
dependencies implicitly. An example for a model that implicitly contains dependence
15A null hypothesis is a particular hypothesis that is tested with a statistical test (Montgomery

and Runger, 2003, p. 697).
16Alternatively, reference data can be generated by a pseudo-random number generator.
17The R function ks.test() is used here.
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is when internal gains (e.g., heat emitted by persons and electrical equipment) are
calculated according to the number of occupants in the simulated zone.
For illustration, an example with three variables is introduced in the following.

The variables are the room temperature set point (Tset), the internal gains (Q̇int)
and the air change rate (ACH ). All of these variables influence the heating demand
(Qheat).

Statistically Independent Data

In the following, discrete random variables are used to explain independence. The
concept for continuous random variables is similar. Two discrete variables X1 and
X2 are statistically independent if and only if

pX1,X2(x1, x2) = pX1(x1) pX2(x2) for all x1 and x2 (2.13)

where pX1,X2(x1, x2) is the joint probability mass function of X1, X2 (Montgomery
and Runger, 2003, p. 153).
When the model inputs are independent of each other, the input UQ can be made

for each input separately. One way to visualize the dependencies in a technical sys-
tem or model is a Bayesian network (also known as belief network or directed acyclic
graphical model) (Dodier, 1999). These networks have nodes and edges, where nodes
represent random variables and edges conditional dependencies18. Figure 2.3 shows
an example of a Bayesian network where Tset, Q̇int and ACH are inputs for a sim-
ulation model to compute Qheat. In this example, there is no connection between
input variables (i.e., it is assumed that they are statistically independent and Equa-
tion 2.13 holds). Thus, they can be sampled independently when an MC simulation
is made. Relations between input and output are governed by physical laws (e.g.,
simulation model).

Tset Q̇int ACH

Qheat

Figure 2.3: Example of statistically independent inputs for a simulation model
represented as a Bayesian network.

18Nodes that are not connected are conditionally independent of each other.
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Statistically Dependent Data

Two random variables are statistically dependent if Equation 2.13 does not hold. In
real buildings, many variables influence each other and hence many input variables
are statistically dependent on each other. This demands careful handling of the rela-
tionships when setting up a (MC) BPS. In the previous example, Tset, Q̇int and ACH
were considered to be statistically independent variables. In reality, these variables
are usually not statistically independent. In a window-ventilated building, the air
change rate depends on the window openings, which depend on the occupants. Fur-
thermore, Q̇int depends on the number of occupants in the building, their behavior
and their use of electrical equipment. In the example shown in Figure 2.4, the occu-
pancy is introduced as a variable (occ) and each of the variables Tset, Q̇int and ACH
is considered to be statistically dependent on occ (i.e., the number of occupants in
the zone and their behavior influences all other simulation input). Dependent vari-
ables make a UA and SA more complicated. Therefore it is desirable to find a model
that describes the relation between variables (e.g., Q̇int = (120 W+ε) ∗ occ). In this
case, the variables can considered to be independent when the sampling is conducted
and ε is a sampled noise term that accounts for uncertainty in the metabolic rate.

occ

Q̇intTset ACH

Qheat

Figure 2.4: Example of dependent inputs for a simulation model represented as a
Bayesian network.

An approach for identifying dependence is outlined in Appendix A.2.
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2.2.2.4 Uncertainties in Time Series Data

Uncertainty Treatment for Variables

Analyzing an uncertain BPS parameter in an MC setting is easier than analyzing an
uncertain BPS variable that changes over simulation time. A parameter can be sam-
pled once and a single value of the parameter can be used for one simulation within
the MC simulation. The situation is different for variables such as temperature set
points, air change rates and the occupancy in a building. One possibility would be
to sample one value for each time step of the simulation. In this case, the average
value of this variable over the simulation19 would be approximately the mean value
of the distribution. Given a linear model, the uncertainty would not have any effect
on the result because high and low values of the variables would cancel each other
out. Schedules are commonly used in BPS to account for variables that change
periodically. These schedules often represent a base case. In a UA or SA setting,
the tabulated values can be scaled to account for uncertainties. Scaling factors or
offsets can be used to implement this variation. The advantage is that such a scaling
factor or offset can be kept constant over one simulation. This results in different
scenarios. An example is the temperature set point in a building implemented as a
schedule. In an MC simulation with different scenarios, there are cases with high
temperature set points (i.e., occupants preferring high indoor air temperatures) and
with low temperature set points (see Figure 2.5). Beside the variation of the set
point temperature, the schedule times can also be varied to account for different
scenarios.

Time Series Forecasting

When a UA or SA is to be applied to analyze future scenarios, it may be necessary
to forecast a time series and quantify the corresponding uncertainties. When con-
ducting a CBA, it is important to analyze future trends in economic data. Time
series models such as ARIMA (auto-regressive integrated moving average) models
are often applied in econometrics to predict future values based on time series data.
The basics of ARIMA models are briefly introduced in the following passage. Uni-
variate time series of economic variables can be used to fit an ARIMA model. An
ARIMA model without differencing (it would be an ARMA model) can be described
by

yt = εt +
p∑
i=1

ai yt−i +
q∑
j=1

bj εt−j (2.14)

19This holds for cases where the number of simulation time steps equals or is greater than the
sample size, where the mean of the sample converges to the mean of the underlying distribution.
This is based on the central limit theorem (see Montgomery and Runger, 2003, pp. 239-241 for
more information).
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Figure 2.5: Variation of set point values in a schedule.

where ε is a noise term, a is the coefficient of the autoregressive (AR) part of the
model, p is the order of the AR part, b is the coefficient of the moving average (MA)
part of the model, q is the order of the MA part. Differencing is necessary in the case
of non-stationary time series and ARMA models should be applied. The order of
differencing is called d. Differencing is performed by replacing yt with ∆yt = yt−yt−1
(Ljung, 1987). Furthermore, it is possible to take seasonal effects into account when
fitting the ARIMA model. When seasonal effects are taken into account, the model
is sometimes called a SARIMA model. In the case of a model with seasonal effects,
the orders of the different model components (AR, MA, I) of the seasonal part have
to be set. These are P for the AR part of the seasonal model, Q for the MA part
and D for the order of differencing. The interested reader is referred to Ljung (1987)
for further information concerning ARIMA models. In this thesis, ARIMA models
are used to predict future values of the inflation rate and the gas price as uncertain
input for a CBA. The parameter identification of the coefficients for the models
can be done with the help of statistical software. The orders of the different model
parts have to be chosen by the analyst. An iterative process can do this (e.g., Box
and Jenkins method (Box et al., 2008)) or an automated parameter variation can
be applied. Another possibility is to use an optimization algorithm for this task.
After such a parameter variation, the log likelihood (ln(L), where L is the value
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of the likelihood function of the model) or the Akaike information criterion (AIC )
can be used to choose the best order of the different model parts. Both serve as
relative measures for the model fit. A model setting with higher log likelihood is
preferred over a model with lower log likelihood, which is based on the maximum
likelihood method (Ljung, 1987). The AIC includes a penalty term for the number
of parameters to avoid too many parameters in the models and thus weights model
performance against model complexity. This is important because a model with a
large number of parameters could produce a nearly perfect fit to the data but noise
would be inherent in some of the model parameters. In this case, these parameters
do not contain useful information and should not be used in the model. A model
setting with a lower AIC is preferred over a model setting with a higher value for
the AIC (Ljung, 1987). The AIC is calculated with the following equation:

AIC = 2 k − 2 ln(L) (2.15)

where k is the number of parameters and L is the value of the likelihood function
of the model. With the help of an ARIMA model, a time series of the future
values of the economic data can be predicted. The analyst should check whether
the prediction looks reasonable for the analyzed case. However, the prediction is
subject to uncertainties and therefore the predicted time series serves as the base
case for the future trend of the economic input. The predicted time series can be
varied in the MC simulation by means of scaling factors to account for different
scenarios. The confidence interval or the standard error of the predicted time series
can be used to determine the scaling factors. It is important to keep in mind that
the approach of using historical data to predict the future has limitations, because
influential events can change the future and are hard to predict. However, in many
cases, historical data is the best source available to predict the future.

2.2.3 Sources of Information

Different sources might be used in the quantification process for simulation input
uncertainties. The selection between different sources is done on the basis of available
information and project scope as well as project requirements and budget. Different
interpretations of uncertainties can exist. The analyst should provide the reasoning
behind the UQ of the inputs. The decision makers involved in the analysis have to
make the final decision concerning the uncertainties assumed in the analysis.

2.2.3.1 Physical Bounds

The most obvious criteria defining the range of an uncertain input parameter are
the physical bounds. An efficiency is a good example for this: by definition an
efficiency can vary between 0 and 1. If no additional information is available, the
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uncertainty can be described by a uniform distribution with a minimum value of 0
and a maximum value of 1 (hence Xi ∼ U(0, 1)). Physical bounds do not include any
information on the distribution of the variable of interest. A uniform distribution
can be assumed if no other information is available. Fortunately, in most cases more
information is available that can be represented by a certain type of distribution.
However, analyzing the physical bounds for the variables of interest can be the first
step of a UQ for simulation input.

2.2.3.2 Literature

As already mentioned in existing BPS literature, there is no general source (i.e.,
database) of information concerning simulation input uncertainty (de Wit, 2003,
pp. 25-26). Distributions and their defining parameters are given for some typi-
cal simulation inputs and cases (e.g., Macdonald, 2002; de Wit, 2003; Pietrzyk and
Hagentoft, 2008; Corrado and Mechri, 2009). An important aspect is that the liter-
ature sources are recent since some variables of interest have changed significantly
in their magnitude in the recent past. An example is the internal gains from elec-
tric appliances. More efficient technical equipment results in lower internal gains
(e.g., usage of laptop computers instead of desktop computers and energy-efficient
displays) (Jenkins et al., 2008). Another problem is that most literature contains
information about single-value estimates rather than the type of distribution and its
parameters (e.g., normal distribution, mean and standard deviation), which describe
the uncertainty. However, a literature study is an important instrument for quanti-
fying simulation input uncertainty. Literature can contain the required statistics to
set up an MC simulation or data that can be the source of computing the necessary
statistics. In the latter case this would be treated like measured data (see Section
2.2.3.4).

2.2.3.3 Expert Knowledge

In cases where little information is available, expert knowledge is a possible source of
information. The effort that is invested for the UQ by experts can vary significantly.
The expert might be an experienced engineer, who conducts the simulation him-
self or a colleague with experience concerning the question to be answered. Under
certain conditions (e.g., time/money availability and high accuracy requirements),
a group of persons might act as experts. A methodology, which minimizes the bias
in the UQ (e.g., overestimation or underestimation of the inherent uncertainty) is
necessary. The information concerning the physical bounds and the findings of the
literature search might be provided to the experts. Based on this information and
their knowledge, they can quantify the uncertainty of the simulation input of in-
terest. The experts can also be asked if they believe that variables are statistically
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independent. However, the estimates concerning the uncertainty are subjective but
in many cases they represent the best information that is available. Hubbard sep-
arates experts into two groups: overconfident and under-confident concerning their
estimates and uses confidence intervals as a quality criterion (Hubbard, 2010, pp.
58-59). He further proposes a procedure to calibrate the experts.
The expert knowledge elicitation process can consist of the following 15 steps

that can be separated into preparation for elicitation, elicitation and post-elicitation
(source: Cooke and Goossens, 2000, p. 19):

(I) Preparation for elicitation:
(1) Definition of case structure
(2) Identification of target variables
(3) Identification of query variables
(4) Identification of performance variables
(5) Identification of experts
(6) Selection of experts
(7) Definition of elicitation format document
(8) Dry run exercise
(9) Expert training session

(II) Elicitation:
(10) Expert elicitation session

(III) Post-elicitation:
(11) Combination of expert assessments
(12) Discrepancy and robustness analysis
(13) Feed back
(14) Post-processing analyses
(15) Documentation

Cooke and Goossens point out that historical and/or measured data should be
preferred over quantification on the basis of expert knowledge (Cooke and Goossens,
2000, p. 20). A crucial part is the design of the elicitation format document. It
provides a framework and supports the experts. Expert elicitation with the 15 steps
listed above is a time-consuming and expensive task. This cannot be accomplished
in most BPS cases. This results in the situation that the engineer who conducts
the analysis acts as the expert and quantifies the uncertainty. This might result in
a biased UQ. However, a structured guide for the elicitation and a basic elicitation
document can reduce the bias.
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2.2.3.4 Measurements

Measurements of the variable or the parameter of interest can be an accurate source
for the UQ of simulation input. Unfortunately, measurements are costly, often not
available and a data analysis of the measurements can be time-consuming. However,
sometimes measurements are available in the case of the simulation of an existing
building (e.g., obtained from the building automation system). This is not feasible
during the design stage of a building. However, data from other (similar) projects or
buildings can be analyzed to obtain the required information. Such measurements
can be the electricity consumption indicating internal loads, room temperatures and
window openings. Statistical dependence between variables can be detected and
analyzed with the help of measurements. Conversely, statistical dependence can
help to obtain information on a variable that is not measured. An example is the
water consumption in non-residential buildings, which is often correlated with the
number of occupants in the building. A regression model can be fitted to obtain
the number of persons in a building at a particular time. The number of occupants
in a building at a particular time influences many other variables of interest, such
as the internal loads and ventilation (see also Section 2.2.2.3). In this way, a single
measurement might be used to obtain information on other variables of interest and
their corresponding uncertainty. The statistics and methods introduced in Section
2.2.2.1 and 2.2.2.2 can be used to analyze the data. Once a PDF is assigned to the
data, the sampling according to the distribution can be performed to generate the
simulation input for the MC simulation20.

2.2.4 Flowchart for the Proposed Methodology

A flow chart is constructed, drawing on the mentioned sources of information (Figure
2.6). The methodology is scalable depending on project requirements. Under certain
circumstances it is also possible to shorten the process (e.g., if measurements of the
variables of interest are available and easily assessable). Furthermore, conducting an
expert elicitation might be an extensive task, such that the acquisition and analysis
of measurements is preferable. In this case, the expert elicitation might be skipped
or conducted when analysis of the measurements was not satisfactory.

20More details on this step will be presented in Chapter 3.
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Figure 2.6: Flow chart of the UQ process for simulation input.
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3 Uncertainty Analysis

3.1 Background and Objectives

3.1.1 Literature Review

A review of methods for UA is presented in this section. Firstly, methods for per-
forming a UA are investigated and literature from various scientific disciplines is
introduced. As a second step, BPS-specific literature concerning UA is analyzed.
Cox and Baybutt (1981) distinguish five approaches to UA in probabilistic risk as-

sessment, which are analytical techniques, Monte Carlo simulation, response surface
approaches, differential sensitivity techniques, and evaluation of classic statistical
confidence bounds. Analytical techniques1 require the availability of an analytical
solution for calculating the mean and the variance. Monte Carlo (MC) techniques
have been briefly introduced in Chapter 1. The idea behind the response surface
approach is to construct a meta-model that is a representation of the original model
but requires less computational resources for the evaluation. The analysis itself is
conducted using the response surface model. Cox and Baybutt (1981) classify differ-
ential sensitivity techniques as UA, whereas in this thesis this method is introduced
in Chapter 4, as it corresponds to the definition for SA. According to Cox and Bay-
butt (1981), the principle behind classic statistical confidence bounds approaches is
to compute the confidence interval of the result given the confidence intervals of the
input. This requires sufficient statistical data for the input and well-defined models.
Finally, Cox and Baybutt point out that only the response surface and differential

sensitivity approaches are applicable for a wide range of applications in probabilistic
risk assessment. They state that MC methods have the disadvantage that they
cannot be applied for computationally expensive models. However, Cox and Baybutt
conducted their analysis in 1981 and computational power has increased greatly since
then. As an example of this increase, the computers that are used for the simulations
in this thesis are compared. Three computers were bought during the period from
2010 to 2012 and each of them costs ≈ 5,000 EUR. All of them are mounted in
a rack and act as server. The key performance indicators are listed in Table 3.1.
Furthermore, the sample size (N) of an MC simulation that can be simulated within
24 hours on the computer is listed. The underlying model is the example that will

1In the course of this chapter, an analytical technique will be applied to calculate the mean and
variance for a simple mathematical model.

33



3 Uncertainty Analysis

be used in this chapter and a one-year simulation is conducted. Hence, N equals
the number of one-year simulations. This example is also chosen to introduce the
hardware that is used for the simulations in this thesis. The table reveals that the
applicability of MC methods can be improved by powerful computers. However, the
high computational cost of MC methods can be a problem. Methods that require
low sample sizes for convergence are very important to improve the feasibility of MC
simulation in BPS practice.

Table 3.1: Comparison of computers.
Computer Year CPU cores CPU GHz Memory N/24 h
Computer 1 2010 12 2.6 GHz 32 GB 6,360
Computer 2 2011 24 1.7 GHz 64 GB 7,795
Computer 3 2012 32 2.4 GHz 128 GB 17,953

UA is applied in different disciplines such as ecological modeling (e.g., Reckhow,
1994), public health (e.g., Thompson et al., 1992), atmospheric sciences (e.g., Web-
ster et al., 2003), the energy sector (e.g., Maurice et al., 2000), and risk analysis
(e.g., Nilsen and Aven, 2003). Many publications on risk analysis deal with UA
since it is an important tool to access risk. Furthermore, risk analyses are multi-
disciplinary and hence conducted for many different scientific fields. MC techniques
are mentioned as an approach to UA in all of the publications mentioned above.
In an MC analysis, a large number of evaluations of the model is performed with

randomly sampled model inputs (Campolongo et al., 2000, pp. 20-24). It consists
of the following main steps:

(I) Selection of PDFs for each uncertain input (Xi).

(II) Generation of a sample from the PDFs.

(III) Evaluation of the model for each element of the sample.

(IV) Result analysis.

Figure 3.1 is an overview of the MC simulation, where the uncertain parameters
are listed in an input matrix, the number of analyzed parameters is k and the sample
size is N . One simulation is conducted for each row of this matrix (illustrated as
red arrows). The output can be a vector or a matrix with the results of interest.
In the following, UA in BPS-specific applications is analyzed. Lomas and Eppel

(1992) describe the application of MC techniques for BPS. They conduct an MC sim-
ulation with three different simulation tools (i.e., ESP, HTB-2 and SERI-RES) and
show the results for stochastic output (i.e., daily energy use, peak power, and maxi-
mum air temperature). Furthermore, uncertainties in time series output (e.g., peak
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Figure 3.1: Input and output of an MC simulation.

power, and maximum air temperature) are investigated. Lomas and Eppel (1992)
use the frequency of occurrences to visualize stochastic output and plot different
time series obtained by the MC simulation. Furthermore, they analyze convergence
for the standard deviation of the daily energy use and conclude that 60-80 simula-
tions are sufficient to estimate the standard deviation2. The standard deviation is
used as a statistic for the result analysis and 2.33 standard deviations3 are used to
analyze the upper and lower bounds of the MC simulation.
Macdonald (2002) analyses different UA techniques and distinguishes between in-

ternal and external approaches. Internal approaches require modification of the BPS
model or program. He investigates interval, fuzzy and affine arithmetic in this con-
text. External approaches treat the BPS model as a black box and input parameters
are perturbed to analyze the effects on the results. Macdonald investigates a dif-
ferential, a factorial and an MC method for the external approach. The differential
and factorial methods are SA techniques and are further analyzed in Chapter 4 of
this thesis. Macdonald (2002) states that an MC simulation usually requires 60-80
simulations and bases this statement partly on the findings of Lomas and Eppel
(1992). He further points out that the advantage of applying MC techniques is that
they fully account for interactions among the analyzed parameters and states that
the result of an MC simulation is normally distributed. Macdonald mentions that
the normality of the result is based on the central limit theorem. He implemented
all three external approaches and one internal approach for the BPS program ESP-r.
De Wit and Augenbroe (2002) conduct an MC-based UA for analyzing thermal

2Special attention will be given to convergence in the course of this chapter.
3±2.33σ corresponds to a confidence level of 98%.
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comfort. They apply Latin hypercube sampling (LHS) for their MC simulation.
Firstly, they perform a crude UA that is followed by an SA to identify the most
influential parameters. As a result of the SA, a refined UA with the most influential
inputs is performed. Unlike Macdonald (2002), they do not comment on the nor-
mality assumption and do not test normality. However, the histogram of the MC
results of the analyzed thermal comfort performance indicator does not appear to
be normally distributed.
Hopfe and Hensen (2011) report results of an MC-based UA implemented with

LHS as the sampling technique. In their work, physical, design and scenario uncer-
tainty are distinguished. The physical uncertainty analysis is conducted by varying
properties of materials, while the design uncertainty analysis is accomplished by
adjusting the geometry and glass surface areas. The scenario uncertainty is imple-
mented by varying the infiltration rate and internal loads.
Eisenhower et al. (2011) perform a UA where they analyze the uncertainties of

about 1,000 parameters. They vary all parameters by ±10% and ±20% of their
nominal value and use a sample size of 5,000. Eisenhower et al. employ EnergyPlus
as the BPS program and quantify the uncertainties for cooling and heating peak
power and annual energy demand. They use a quasi-random sampling method that
shows a better convergence rate than conventional sampling methods. Eisenhower
et al. present findings that contradict the generality of the convergence statements
of Lomas and Eppel (1992) and Macdonald (2002).
Heo (2011) investigates decision-making under uncertainty for energy retrofit

projects. She uses Bayesian calibration where measurements from the building are
required for the BPS. Heo introduces a systematic procedure for retrofit analysis
and employs the calibrated model to compute probabilistic outcomes for energy sav-
ing measures. She analyses the probabilistic simulation results (i.e., simple payback
time of the required investment) with three decision-making measures (i.e., expected
value, 95-quantile and the expected value divided by the standard deviation).

3.1.2 Objectives

In order to make MC simulations feasible in practice it is important to decrease the
number of MC runs required (i.e., computational cost). In this chapter, different
sampling strategies are investigated in order to achieve this reduction. Furthermore,
different methods for analyzing the results of an MC simulation are compared. The
aim is to find appropriate ways of visualizing the results and to find informative
statistics for different applications. The developed methodology is intended to guide
analysts through the UA and to provide quality assurance (e.g., convergence testing,
correct interpretation of figures and statistics).
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3.2 Methodology

3.2.1 Sampling

A key element of MC techniques is the sampling of input parameters for the simu-
lation, where the goal is to explore the entire input space with a reasonable sample
size (N). The sample size determines the computational cost of the analysis since
N is equal to the required number of simulation runs. The input parameter space
has k dimensions where k is the number of analyzed parameters. Exploring the
input parameter space with a sufficient sample density becomes numerically expen-
sive when k is large, as the number of partial volumes increases dramatically with
k. This phenomenon is known as the curse of dimensionality (Saltelli and Annoni,
2010). In this section, different sampling techniques are analyzed with respect to the
convergence of the estimators of the mean and the variance of the result. Another
measure of the performance of the sampling strategy is its robustness. It can be
investigated using multiple MC simulations and analyzing their results. One way
to visualize the robustness is to compare the empirical cumulative density functions
(CDFs) of several repetitions of the MC simulation (Helton and Davies, 2003). A
further way to analyze the robustness is to use the Kolmogorov-Smirnov test which
was introduced in Section 2.2.2.2. This test can be used to supplement visual in-
spection of the ECDFs. The test result is the longest distance (D) between two
cumulative distribution functions. The maximum D of all combinations can serve
as a measure of robustness. The higher the maximum D of all combinations of the
ECDFs, the greater is the possible difference between two MC experiments due to
the sampling technique. Hence, a low maximum D for all combinations indicates a
robust sampling technique.
Sampling can be done randomly, where the random numbers are independent

realizations of a random variable (Sobol’ and Levitan, 1999). A random number
is a mathematical definition and "real" random numbers cannot be generated in
a computer experiment because computers use algorithms for sampling. There-
fore, random number generators are often and more correctly called pseudo-random
number generators (Sobol’ and Levitan, 1999). Beside pseudo-random numbers
quasi-random numbers can be used. Quasi-random numbers are generated using an
algorithm or a sequence of numbers that fulfill requirements as if they were true
random numbers. The difference is that successive sampled points take the position
of previously sampled points into account (Saltelli et al., 2010). The properties of
the samples can be analyzed by means of statistical tests (Sobol’ and Levitan, 1999).
Many software packages include sampling algorithms for the most common distri-
butions (e.g., uniform, normal and log-normal distributions). Another way is to use
sampling algorithms to produce random numbers which are uniformly distributed
over the interval from 0 to 1 (i.e., Xi ∼ U(0, 1)) and to convert these numbers with
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the quantile function (i.e., inverse cumulative distribution function) of a distribution
into a certain range (Campolongo et al., 2011). Sometimes it is difficult to find an
appropriate PDF to describe data (see Chapter 2). In these cases, the data might
be used to compute the empirical inverse cumulative distribution function.

3.2.1.1 Random Sampling

A random sample can be generated by a pseudo-random number generator which is
available in many software packages. A sample is randomly distributed in a defined
interval according to some distribution (e.g., uniform distribution over the interval
[0,1], hence Xi ∼ U(0, 1) with i = 1, 2, ..., N). For small sample sizes (N), the
samples can contain clusters and gaps as shown in Figure 3.2 on line a. Regions
with gaps are not taken into account in the statistical analyses for any UA or SA and
function values in the regions with clusters are overemphasized in the calculations
(Saltelli et al., 2008, p. 83). The sample on line b is drawn using the same pseudo-
random number4 generator but shows a better coverage of the interval.

Figure 3.2: Two examples of sampling with a pseudo-random number generator.

The unbiased mean and variance of the model output can be calculated by Equa-
tions 2.2 and 2.3 that were introduced in Section 2.2.2.1. The mean and the variance
resulting from the sample and calculated with these two equations are uncertain.
Based on the central limit theorem, the uncertainty in the estimate of the mean can
be quantified with the standard error (Saltelli et al., 2008, p. 59)

SE(Ȳ ) =

√
Var(Y)
N

. (3.1)

This equation shows that the uncertainty decreases slowly when N increases since
it depends on the square root of N .
In the following example, a three-dimensional parameter space is used to illus-

trate the properties of the sampling methods. However, the reader should keep in
4The R function runif() is used to draw the sample.
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mind that exploring the parameter space becomes harder as the number of ana-
lyzed parameters (k) increases. The sampling is performed according to a uniform
distribution in the interval [0,1]. Figure 3.3 shows a three-dimensional plot of the
parameter space X1, X2 and X3 with N = 128. This number was chosen because
of the properties of the sampling based on Sobol′ sequences which will be explained
later. For pseudo-random sampling, any N can be chosen but N = 128 is used for
the sake of comparability.

Figure 3.3: Three-dimensional plot of the pseudo-randomly sampled points in the
parameter space X1, X2 and X3. The color of the points varies from
red to black depending on the value of X2 to allow easier interpretation
of the plot.

With a three-dimensional plot, it is a difficult task to check whether the parameter
space is explored appropriately. For this reason, Figure 3.4 shows the variables X1,
X2 andX3 plotted against each other in two-dimensional plots. The plots for random
sampling show clusters and gaps.

3.2.1.2 Stratified Sampling

Figure 3.2 showed that a random sample may contain clusters and gaps. Using a
stratified sampling technique can solve that problem. In a scheme which applies
stratified sampling, the domain of Xi is divided into subintervals. Each of the
subintervals contains the same number of sample points. These points are sampled
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Figure 3.4: Three sampled parameters plotted against each other in pairs, for sam-
ple sets obtained by different sampling techniques. Left to right: X1
vs. X2, X1 vs. X3, and X2 vs. X3. Top to bottom: Pseudo-random,
stratified sampling, Latin hypercube sampling and sampling based on
Sobol′ sequences.
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3.2 Methodology

randomly within each subinterval using a pseudo-random number generator. If
one compares Figure 3.2 with Figure 3.5, it is obvious that the stratified sampling
technique ensures the avoidance of clusters and gaps at a certain resolution. The
mean and variance are calculated in the same way as for pseudo-random sampling
(see Equations 2.2 and 2.3).

Figure 3.5: Two examples of stratified sampling. The position of the points within
each subinterval is chosen randomly.

The same technique is applied in multivariate stratified sampling. Figure 3.6
shows a two-dimensional parameter space obtained by stratified sampling with 10
strata for each parameter. This results in 100 cells with one point in each cell. For
a given resolution, stratified sampling results in less uncertain mean and variance
estimates than pseudo-random sampling (Saltelli et al., 2008, p. 80). Note that the
required sample size for this approach is

N = sk. (3.2)

Hence, for stratified sampling with 10 strata (s) and 5 parameters (k), a sample
size (N) of 105 = 100,000 is required.
In Figure 3.4, the stratified sampling set shows gaps and clusters like the random

sampling. The reason is that a sample size of 125 (128 as for the other techniques
could not be used because of the property described by Equation 3.2) results in 5
strata, which is not sufficient to avoid visible clusters and gaps.

3.2.1.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a particular kind of stratified sampling. One
feature is that each parameter is stratified over s > 2 intervals (levels), where the
same number of points is located in each interval (Saltelli et al., 2008, p. 76). An
example of LHS with two parameters, 10 intervals and a sample size (N) of 10 is
shown in Figure 3.7. The unique property of the sampled points of an LHS is visible:
each sampled point is associated with one of the 10 rows and one of the 10 columns.
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Figure 3.6: Scatter plot of a two-dimensional sample set obtained by stratified sam-
pling. The position of the points within each cell is chosen randomly.

In Figure 3.4, the Latin hypercube sampling5 results in gaps and clusters like the
random sampling because the sample size is too small to generate a sample with the
same density across the parameter space. The mean and variance are calculated in
the same way as for pseudo-random sampling (see Equations 2.2 and 2.3).

3.2.1.4 Sampling Based on Sobol′ Sequences

The investigated method is based on Sobol′ sequences. Sobol′ sequences belong to
the family of quasi-random sequences, which are designed to generate samples of
multiple parameters as uniformly as possible over the multi-dimensional parameter
space (Saltelli et al., 2010). Quasi-random numbers can be applied similarly to
pseudo-random numbers. The greatest difference to pseudo-random numbers is that
the sample values are chosen under consideration of the previously sampled points,
thus avoiding the occurrence of clusters and gaps. One criterion for assessing the
performance of a sampling method is the discrepancy in the exploration of the
multi-dimensional parameter space. The discrepancy metric was defined by Ilya M.
Sobol′ and is the maximum deviation between the theoretical density dt = 1/N
and the point density di in an arbitrary hyper-parallelepiped within the parameter
space (hypercube) (Saltelli et al., 2010). The sampling based on Sobol′ sequences is

5The LHS was implemented using the R package lhs (Carnell, 2007).
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Figure 3.7: Scatter plot of an LHS: X1 vs. X2. The colored dotted lines indicate
the intervals to which the sampled point belongs. For reasons of clarity,
this is plotted for two points only. However, each point can be similarly
characterized.

designed to generate samples with a low discrepancy value.

Figure 3.4 shows that the points produced by sampling based on Sobol′ sequences6

are more evenly distributed than the points produced by the other sampling tech-
niques. As a result, the discrepancy in the exploration of the multi-dimensional
parameter space is lower than for the other sampling techniques. The mean and
variance are calculated in the same way as for the other sampling techniques (see
Equation 2.2 and 2.3).

One result of the low discrepancy value is that the estimated mean of a function

6Sampling based on Sobol′ sequences is implemented using the R package randtoolbox. For the
repetitions needed to test the robustness of the MC simulation, the sampling was done using
the Owen type of scrambling with a random seed (Dutang, 2009).
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will converge more quickly to the true mean than in the case of pseudo-random
sampling (Saltelli et al., 2008, p. 83). How quickly depends on the model structure
and will be analyzed later. The properties of the Sobol′ sequences require a sample
size of

N = 2j (3.3)

where j ∈ N+ (Saltelli et al., 2010).

3.2.2 Evaluation of the Model for each Element of the Sample

The most time-consuming part of an MC simulation for BPS is the evaluation of the
model for each row of the input matrix. This process requires a software tool that can
be used to change simulation input files, to execute the simulation and to save the
results. MC simulations are well suited for parallelization because the simulations
for each row of the input matrix are independent of each other. This is especially
important for BPS, where models are fairly complex and full-year simulations are
common practice. The applicability in practice has improved due to the availability
of multi-core processors, which became standard in recent years (see also Table 3.1).
Given sufficient memory and hard drive performance, the number of processor cores
equals the possible number of parallel simulations. In the context of this thesis,
R is used to manage the parallelization and to call the executable generated by
Dymola7. Three scripts are employed to conduct the parallel MC simulation8. One
is the main script (MainScript.R) that generates the samples, generates the same
number of folders as parallel computations to be conducted and sets the required
symbolic links for the file system or copies files as required. The second script
(Simulation.R) is copied into each of the subfolders and called from the main
script. This simulation script changes input files9, calls the simulation and processes

7The R function system() is used to call the executable.
8The scripts were partly developed in cooperation with Dirk Jacob (Jacob, 2012) and Olga
Tsvetkova (Tsvetkova, 2011).

9A template file with tokens representing the values of the uncertain input is used to generate the
input files.
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the results. The third script (CollectResults.R) is used to collect and process
the results from the different subfolders. Figure 3.8 shows an overview of the MC
simulation on the server computers. The folders with gray and files with light
gray filling are generated during the MC simulation. This approach can be used
to employ several processor cores on one computer or distribute the simulations to
different computers in a network.
In the course of this chapter, the convergence of MC simulations is analyzed. A

practical issue concerning MC simulations is that the required sample size for which
the simulation converges10 is not known a priori. Hence, different sample sizes have
to be tested. A termination criterion might be that the analyzed estimator does not
change by more than a certain amount (absolute or relative) from one to another
sample size. However, this can happen by chance. A more reliable termination rule
would be that the estimator does not change significantly for the last 3 sample sizes.
The significance level can be chosen depending on accuracy requirements. If more
than one estimator is analyzed, this must hold for each estimator separately (e.g.,
mean and variance). Beside the mean and variance, the sensitivity indices could be
used as estimators11.

3.2.3 Methods for Interpreting Results

An MC simulation generates a large amount of data. Statistics and visualization
techniques are required to interpret the results. Several statistics were introduced in
Section 2.2.2. Their applicability for MC simulation results is tested in the following.

3.2.3.1 Stochastic Output

Stochastic output refers to a result of an MC simulation (e.g., annual energy con-
sumption, CO2 emissions, net present value of an investment12). Most commonly,
these results are simulation variables integrated over a time interval (usually the
entire simulation period).

Visualization

A widely used form of presenting results from MC simulations is a histogram. The
x-axis of a histogram is divided into intervals and the number of observations of the
MC result that occur in one interval (ni) is counted. A rectangle with the width
of the interval and a height corresponding to the counted number (frequency) of
10Different definitions of convergence exist and some definitions will be introduced in the course of

this chapter.
11This will be investigated in Chapter 4.
12More details on the calculation of net present values will be presented in the course of this chapter

(Equation 3.6).
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MainFolder
MainScript.R (script to operate the MC simulation)

dymosim (executable generated with Dymola)

dsin.txt.template (Dymola input file template with tokens)

CombiTimeTable.txt (generic input table, e.g., weather)

Simulation.R (script to manage simulation in subfolder)

CollectResults.R (script that collects results from subfolders)

M.csv (input matrix of sampled values)

IntegralResults.csv (final result of MC simulation)

Job1
dymosim (executable generated with Dymola)

dsin.txt.template (Dymola input file template with tokens)

CombiTimeTable.txt (generic input table, e.g., weather)

Simulation.R (script to manage simulation in subfolder)

MJob1.csv (input matrix of sampled values for subfolder)

dsin.txt (Dymola input file)

dsres.txt (Dymola output file)

*.log (several log files from Dymola and the MC simulation)

IntegralResultsJob1.csv (MC simulation results)

Job2

Job3

JobN

Figure 3.8: File system tree for the parallelization of an MC simulation.

observations is constructed (Box et al., 2005, p. 19). A histogram provides an
impression of the location, spread, minimum and maximum value of the MC result.
From a histogram, it is also possible to infer which distribution is suitable to describe
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the data. However, as already mentioned in Chapter 2, a histogram might not be
sufficient to decide which distribution is most suitable. A further visualization step
is to normalize the histogram. This can be done by making the area of the ith
rectangle equal to the relative frequency ni/N, where N is the sample size. After
normalization, the area under the histogram is equal to unity (Box et al., 2005, p.
20). Furthermore, Section 2.2.2.2 contains tests to find the most suitable distribution
to describe the uncertainty of the results.

Statistics

Various statistics were introduced in Section 2.2.2. They can be calculated to allow
quantitative result interpretation. Depending on the purpose of the analysis, differ-
ent statistics can be calculated. The median and the mean specify the location of
the result. The variance and the standard deviation serve as quantitative measures
of spread. Minimal and maximal values might be analyzed to account for best-case
and worst-case scenarios.

3.2.3.2 Stochastic Time Series Output

The time series output can be analyzed to characterize the dynamic behavior of the
simulated system. Visualization techniques are one way to interpret results. The
uncertainty of time series can vary between the different points in time. This makes
the calculation of statistics more complicated because it can be necessary to compute
the statistics for each timestamp. This can result in many statistics. However, it is
a way to analyze the uncertainties for time series.

Visualization

Box plots can be used to indicate result uncertainties for time series. In this ap-
proach, a box plot indicates the variation of the results for one point in time or for
a time interval. Jacob (2012) uses this kind of visualization for a time series for 24
hours with one box plot per 15 minutes. However, some simulations require higher
result resolution (e.g., analysis of controls under dynamic conditions) or visualiza-
tion for a longer period. This might require too many box plots in one figure for
straightforward interpretation. An alternative is visualization as a contour plot with
colors indicating the probability density at different timestamps or for different time
intervals.

Statistics

The statistics for stochastic time series are similar to the statistics for stochastic
output but they are calculated for each timestamp or timestamps with comparable
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conditions (e.g., mean and variance for the heating power of a weekday at 9:00 am).
Another possibility is to aggregate the results and to compute statistics for these
aggregated values.

3.2.4 Combined Building Performance Simulation and
Cost-Benefit Analysis

In practice, many decisions are based on monetary criteria. It seems to be natural
to talk about different options in terms of money. Particularly for people without
an engineering background, it is appealing to make a decision on the basis of a
monetary value. CBA is a common approach for making economic decisions. The
main idea underlying CBA is that total expected costs are compared with the total
expected benefits of a project in order to choose the most profitable of the compared
options. Benefits and costs are usually expressed in terms of money (Nas, 1996).
The length of the analyzed time interval plays an important role. Usually the cash
flows of costs and benefits occur at different times and the analyzed time frame for
buildings varies from 5 to 50 years. The longer the time frame, the greater the
difference in monetary value becomes. Due to this fact, costs and benefits need to
be adjusted for the time value of money. All cost and benefit flows in the course of
the project are expressed in a common term, their present discounted value (PDV )
(Pindyck and Rubinfeld, 2005, p. 718).
In this thesis, a method for combining BPS and CBA and for performing a UA

and SA for this combination is proposed. The analysis is conducted using a 2-step
procedure. The first part is an MC simulation of the performance of the building
and its HVAC equipment. The output of the BPS (e.g., the gas consumption) is used
as input for the MC CBA. Figure 3.9 shows an overview of the simulation process.
All CBA inputs which are considered uncertain are sampled except for one input of
the CBA that is the result of the BPS. The histograms represent the inputs that
are considered to be uncertain and the uncertain output, respectively. Besides the
uncertain inputs, there are many parameters and variables that can be considered
as known. Hence, single-value estimates are used for these inputs. The decision
on whether a parameter or variable is considered to be known or uncertain can be
based on several criteria (see Chapter 2 and 4).
As already mentioned, expected costs are compared in a CBA with the expected

benefits of a project. The different times at which cash flows take place require an
analysis that takes interest and compound interest as well as inflation rates and en-
ergy price escalation into account. This is done by calculating the present discounted
value (PDV ) of every cost and benefit over the analyzed time span (Pindyck and
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BPS

CBA

single-value estimates

single-value estimates

Figure 3.9: Overview of the MC simulation with consecutively conducted BPS and
CBA.

Rubinfeld, 2005, p. 718). The PDV can be calculated according to

PDV =
n∑
t=1

CF t(
1+IR

1+Inflt

)t (3.4)

where CF t is a future cash flow at time t, t is the year in which the cash flow takes
place, IR is the nominal interest rate, Inflt is the average inflation rate from year 1
until year t and n is the number of years taken into account in the analysis. Inflt
can be calculated according to

Inflt =
(

t∏
z=1

(1 + Inflz)
) 1
t

− 1 (3.5)

where Inflz is the inflation rate for year z in the period from year 1 till year t.
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The final decision criterion used for the CBA in this thesis is the net present
value (NPV ) over the life cycle (n) of the analyzed technical system. The NPV is
defined as the difference between the PDV of the benefits and the PDV of the costs
(Pindyck and Rubinfeld, 2005, p. 726) (see Equation 3.6).

NPV = PDV benefits − PDV costs (3.6)

A positive NPV indicates that the analyzed option is beneficial for the given set of
assumptions. When different design options are compared, the one with the highest
NPV is the most beneficial option13.

3.2.5 Case Studies

In the following two examples are introduced. The results of the UA for both
examples will be presented in Section 3.3.

3.2.5.1 Simple Mathematical Model

The first model used to analyze the performance of the different sampling techniques
is a simple mathematical model. It has the advantage that analytical solutions are
available, which results in straightforward analysis and provides a test case for the
analyzed methods. The model was introduced by Tarantola (2010) and Figure 3.10
shows a contour plot of the model.
The 2-dimensional model equation is

f(x1, x2) = 4x2
1 + 3x2 (3.7)

with the input distributions

x1, x2 ∼ U
(
−1

2 ,
1
2

)
.

The expected value is

E(f(x1, x2)) =
∫ 0.5

−0.5

∫ 0.5

−0.5

(
4x2

1 + 3x2
)

dx1dx2

= 1
3 (3.8)

13For more information on CBA for HVAC equipment, the interested reader is referred to the inter-
national standard EN 15459 Energy performance of buildings - Economic evaluation procedure
for energy systems in buildings (DIN EN 15459, 2008).
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Figure 3.10: Contour plot of the simple mathematical model for f(x1, x2) according
to Equation 3.7.

and the variance is

Var(f(x1, x2)) =
∫ 0.5

−0.5

∫ 0.5

−0.5

(
4x2

1 + 3x2
)2

dx1dx2 − (E(f(x1, x2)))2

= 0.838̄. (3.9)

The availability of the analytical solution makes it convenient to check the con-
vergence of the MC simulation.

3.2.5.2 Building Performance Simulation Model

The building simulated is a typical German building with a net floor area of 436 m2.
The model was introduced in Burhenne and Jacob (2008) and Burhenne et al.
(2010b). There is no air-conditioning equipment in the building and the heat for
space heating is emitted by radiators. The building14 is equipped with sensors (e.g.,
outside temperature, heating consumption, room temperatures) to allow for a vali-
dation of the simulation. The main building parameters are shown in Table 3.2 and
Figure 3.11 is a 3D-view of the building.
MC simulations require many simulation runs and are therefore computationally

expensive. Especially the tests with repetitions of the analysis require many sim-
ulations but are necessary to evaluate the performance of the different sampling
14The building served as a demonstration building in the project ModBen (Neumann et al., 2011).
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Table 3.2: Building parameters.
Parameter Value Unit

A
V (envelope area to volume ratio) 0.81 m2

m3

U value (mean U-value) 0.53 W
m2K

Awin (total window area) 106 m2

ANFA (net floor area) 436 m2

Figure 3.11: 3D-view of the building.

techniques. For this chapter, more than 100,000 one-year simulations were executed
to perform the analysis (100 repetitions for four techniques with a sample size of
256 for each MC simulation). The simulations are performed in parallel on a Linux-
based computer. However, in order to reduce the computing time, it is desirable
to use an appropriate simple model for the BPS. The simple hourly method (SHM)
according to the ISO 13790 (2008) standard is used as a zone model. This zone
model is based on five resistances and one capacity. The model was calibrated for
this building; it showed a good agreement with the measured room temperatures
and the heating demand of the building (Burhenne and Jacob, 2008).
In actuality, the building is an office building heated by a gas boiler. For this

analysis, however, it is assumed that it is a residential building with 12 occupants15.
A solar thermal collector with 25 m2 area and a 2,000 liter storage tank are modeled.
The collector model is implemented in Modelica using a model described by Isakson
and Eriksson (1994). The collector flow rate is controlled by an on/off controller;
the storage tank is modeled as a simple one-resistor/one-capacitor (R1-C1) network.
The radiation processor is implemented on the basis of an equation-based model
15The reason for this assumption is that this case is more interesting with respect to the analyzed

HVAC equipment.
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(written in the modeling language Neutral Model Format; (Sahlin, 1996)) from the
simulation software IDA ICE (Sahlin et al., 2004). The solar thermal system is
designed for domestic hot water (DHW) and space heating. When the heat from
this solar thermal system is not sufficient, a gas boiler meets the remainder of the
load. Further details on the model can be found in Burhenne et al. (2010b). The
primary result is the annual solar fraction which is defined as

SolFrac = Qcollector
Qtotal

(3.10)

where Qcollector is the annual energy supplied by the solar collector and Qtotal is the
annual energy demand for space heating and DHW.
Furthermore, the case study is intended to illustrate the capabilities of the UA

methodology for a combined BPS and CBA. The central question is the cost effec-
tiveness of different building design options. In order to answer this question, two
scenarios are analyzed. The base case scenario is a conventional gas boiler that sup-
plies the building with heat and domestic hot water. The second scenario is a solar
thermal collector system in conjunction with a gas boiler as was described above.
It is analyzed whether the additional investment for the solar thermal collector, the
storage tank and the additional necessary equipment is cost-effective or not16. This
requires only one set of MC simulations with the renewable plant equipment. This
is possible because the total energy consumption of both design options is assumed
to be the same17. The economic efficiency is assessed on the basis of the necessary
additional investment for the solar thermal system (costs) and the savings based on
the reduced gas consumption when a renewable system supplies a fraction of the
total energy demand (benefits). The analyzed period in the CBA is 25 years. This
period has to be chosen depending on the durability of the analyzed system and
other project boundaries. It is assumed that the performance of the building and
its energy demand is similar each year. Given the time frame of 25 years, climate
change and other variations for the BPS might play a role and could be analyzed
within the proposed framework. However, this is not taken into account here for the
sake of simplicity.

Uncertain BPS Input

It is assumed that the mass flow rate of the domestic hot water (ṁDHW) and the air
change rate (ACH ) are uncertain. Furthermore, the number of people (occ) present
16Design parameters (e.g., collector area, tank volume) could be varied as well. However, in this

case, only scenario parameters were varied to account for uncertain boundary conditions.
17For the sake of simplicity, it is assumed that the storage losses are the same. This is a simplification

but can be the case because solar thermal storage tanks are commonly better insulated than
conventional DHW tanks (base case scenario).

53



3 Uncertainty Analysis

at a particular time and the set point for the room temperature (Tset) cannot be
determined exactly. These four values (ṁDHW, ACH , occ, Tset) are all dependent on
occupant behavior and were selected here because such variables have been identi-
fied as influential parameters in several studies (e.g., Page et al., 2008; Brohus et al.,
2009; Haldi and Robinson, 2011). The schedule for the domestic hot water flow rates
is generated with a program, which was developed in the Solar Heating and Cooling
Program of the International Energy Agency (IEA-SHC), Task 26: Solar Combisys-
tems (Jordan and Vajen, 2003). The air change rates, the number of occupants
and the room temperature set point are also implemented using a schedule. The
variation of the schedule values is implemented by multiplying a sampled scaling
factor or adding an offset value. The scaling parameters are listed in Table 3.3. The
distributions and the standard deviation were chosen on the basis of experience and
literature. Pietrzyk and Hagentoft (2008) also use normal distributions for charac-
terizing air change rates and the mean and standard deviation of ACH implemented
in the simulations is comparable with cases illustrated in their study. In the case
of ṁ, a standard deviation of 10% of the schedule values and a normal distribution
seems appropriate to account for different consumption scenarios. Occupancy is
very specific to the case analyzed and the normal distribution around the assumed
schedule is intended to explore some possible scenarios. Note that the values for
the offset for the number of occupants and the set point are rounded (integers for
the occupancy and values with one decimal place for the set point). Figure 3.12
illustrates the use of the scaling factors for ACH and the offsets for occ. The red
line represents the base case schedule and the box plots indicate the different values
for ACH and occ used in the MC Simulation. As mentioned in Section 2.2.2, there
might be dependence between some of the uncertain input variables (e.g., the num-
ber of occupants present influences the air change rate and the domestic hot water
consumption). However, these relationships are neglected in this study for the sake
of simplicity and to allow easier interpretation of the example.

Table 3.3: Parameters selected for variation and their distributions for the BPS (µ
is the mean and σ is the standard deviation).

Parameter Distribution µ σ Unit
ṁDHW (scaling factor) normal 1 0.1 –
ACH (scaling factor) normal 1 0.2 –

occ (offset) normal 0 2 –
Tset (offset) normal 0 1 K
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Figure 3.12: Variation of schedule values for air change rate (ACH ) and occupancy
using scaling factors and offsets.

Uncertain CBA Input

For the CBA, it is assumed that the gas price (GP), the inflation rate (Infl), the
interest rate (IR), the investment cost (IC ) and Qcollector are uncertain. The uncer-
tainty in Qcollector is an input coming from the BPS.
Some aspects of the UQ for the economic inputs and the UA for the combined

BPS and CBA have been published by Burhenne et al. (2013a).
As input for a potential CBA, the inflation rate and the gas price for Germany are

predicted using ARIMA models. Literature data is used to fit the ARIMA model
and to predict the base case scenario for the development of the gas price and the
inflation rate. This base case scenario is varied during the MC simulation to account
for uncertainties.

Inflation Rate

The inflation rate is the rate at which prices in an economy increase. The inflation
rates for Germany in the period of 1997-2011 are used as the basis for the analysis
(European Commission Eurostat, 2012). The data from this period are used to fit
an ARIMA model with seasonal components18. The order of the model parts (p, q,

18The R function arima() is used for the ARIMA model parameter identification.
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d, P, Q, D) is chosen on the basis of a parametric run19 of all possible combinations
with p, q, P and Q varied from 0 to 3 and the order of differencing varied from 0
to 2. This results in 2,304 different combinations. The Akaike information criterion
(AIC ) value of the different model configurations is used as the selection criterion
(see Equation 2.15). Not all possible combinations produce reasonable predictions
and some result in errors or warning messages for the ARIMA fit function in R.
The reason for this might be limitations introduced by the time series data since
the analyzed period is relatively short and only annual values are used20. How-
ever, the configurations with a low AIC were analyzed by visual inspection. The
chosen configuration is among the best (i.e., low AIC ) 11% of all possible model
configurations. Figure 3.13 shows the historical data, the prediction of the chosen
model configuration and the confidence interval of the predicted time series21. The
prediction is performed for 25 years (2012-2036). The inflation rate has a periodic
characteristic over time. The parameters of the model are listed in Table 3.4.

Figure 3.13: Time series for the inflation rate in Germany. The values from 1997-
2011 are historical data. The values starting in 2012 are predicted
using an ARIMA model that is fitted with the historical data. The
dashed lines represent the confidence interval.

To vary the base case prediction during the MC simulation, the standard error
of the predicted time series is used in the sampling procedure. The variation is
assumed to be normally distributed. This results in different scenarios within the
MC simulation (different complete time series of inflation are used to conserve the
periodicity). However, the standard error of the prediction is very high and could
19The procedure for this exhaustive search in R was introduced by Zoonekynd (2007). This proce-

dure has been modified and used in this thesis.
20In the presented case, the cyclic component has a longer period than one year.
21The R function predict() is used for the prediction and corresponding statistics.
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Table 3.4: ARIMA model parameters for the inflation rate.
Parameter Value SE

Order of AR (p) 2 –
Order of MA (q) 2 –

Order of differencing (d) 0 –
Order of seasonal AR (P) 0 –
Order of seasonal MA (Q) 0 –

Order of seasonal differencing (D) 1 –
Coefficient AR (a1) 0.8749 0.1278
Coefficient AR (a2) -0.9899 0.0377
Coefficient MA (b1) -0.7435 0.3058
Coefficient MA (b2) 1.0000 0.3829

Result Value SE
log likelihood -12.43 –

Akaike information criterion (AIC ) 34.86 –
Variance (σ2) estimate 0.332 –

result in an overestimation of uncertainty. Based on historical data and the fact
that political measures aim to keep the inflation rate within a certain range, it was
arbitrarily assumed that the standard deviation in the sampling procedure is 60%
of the standard error of the ARIMA prediction. Figure 3.14 shows box plots of
the sampled values as well as the ARIMA prediction and its confidence interval.
The circles represent outliers. This is data that lies outside the whisker range22.
Predictions until 2036 are highly uncertain. A single "correct" assumption does
not exist. As already mentioned above, the decision makers involved in the analysis
would have to make the final decision as to the uncertainty which should be assumed.
The analyst should provide guidance in this process.

Gas Price

Historical data from 1991 to 2011 (BMWi, 2012) is used to fit an ARIMA model.
The ARIMA model parameter identification is conducted similarly to that for the
inflation rate. Figure 3.15 shows the historical data, the prediction and the confi-
dence intervals of the predicted time series. Unlike the inflation rate, the consumer
gas price has an increasing trend rather than a periodic one. The configurations
with the lowest AIC were analyzed by visual inspection. As for the ARIMA fit for
the inflation rate, not all possible combinations produce reasonable predictions and
22As mentioned in Chapter 1 the maximum length of the whiskers is 1.5 times the interquartile

range. The interquartile range equals the length of the box.
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Figure 3.14: Box plot of the sampled values for the inflation rate used in the MC
simulation. For illustration, the ARIMA prediction (red line) and the
corresponding confidence interval (dotted red lines) are also plotted.

some result in error or warning messages for the ARIMA function in R. The cho-
sen model configuration is among the best (i.e., low AIC ) 34% of all combinations.
The confidence interval indicates that the model outcome becomes highly uncertain
when the future values are far away from the time when the investment is made.
The parameters of the model are listed in Table 3.5.
It is not likely that the gas price will become negative, although the confidence

interval in Figure 3.15 indicates it. At the same time, very high energy price scenarios
can occur, even though they do not have a high probability. For these reasons, the
uncertainty of the gas price time series is considered to be log-normally distributed.
This results in different gas price scenarios. Similar to the assumptions for the
uncertainty of the predicted inflation rates, the standard deviation in the sampling
procedure is assumed to be 60% of the standard error of the ARIMA prediction.
Figure 3.16 shows box plots of the sampled values as well as the ARIMA prediction.

Interest Rate

Depending on the specific project boundary conditions, different assumptions for
the IR used in the CBA can be chosen. The most significant difference is probably
whether the money for any additional investment has to be borrowed from a bank
or not23. In this example, a fixed IR over the analyzed period is assumed. To
23If the money comes from a loan with a fixed loan period and contract, IR might not be subject

to any uncertainty.
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Figure 3.15: Time series for the consumer gas price in Germany. The values from
1991 to 2011 are historical data. The values starting in 2012 are
predicted using an ARIMA model that is fitted with the historical
data. The dashed lines represent the confidence interval.

Table 3.5: ARIMA model parameters for the gas price.
Parameter Value SE

Order of AR (p) 1 –
Order of MA (q) 2 –

Order of differencing (d) 2 –
Order of seasonal AR (P) 0 –
Order of seasonal MA (Q) 1 –

Order of seasonal differencing (D) 1 –
Coefficient AR (a1) -0.6190 0.3238
Coefficient AR (a2) 0.0649 0.6773
Coefficient MA (b1) -0.8518 0.5917
Coefficient MA (b2) -0.7051 0.5028

Result Value SE
log likelihood -12.07 –

Akaike information criterion (AIC ) 34.15 –
Variance (σ2) estimate 0.1966 –

account for different scenarios, IR is varied in the MC simulation. IR is sampled
according to a uniform distribution in the interval [2, 10], hence IR ∼ U(2, 10)
with i = 1, 2, ..., N . Interest rates in this range seem reasonable for investments in
renewable energy systems.
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3 Uncertainty Analysis

Figure 3.16: Box plot of the sampled values for the gas price used in the MC
simulation. For illustration, the ARIMA prediction (red line) and the
corresponding confidence interval (dotted red line) is also plotted.

Investment Cost

During the design process, prices for the investment are assumed. Depending on
the market, the final IC might be different to the costs assumed in the design stage.
To take this into account, IC is assumed to be uncertain. Only the additional cost
for the solar thermal system is taken into account. The specific investment cost for
one square meter collector area including all other costs (e.g., storage tank, pumps,
pipes) is sampled according to a normal distribution with µ = 700 EUR/m2 and
σ = 50 EUR/m2, hence IC ∼ N(700, 50) with i = 1, 2, ..., N . Not only the investment
cost but also running costs, periodic replacement cost and maintenance costs are
included in many CBA (specific information can be obtained from DIN EN 15459
(2008)). However, they are not considered in this example for reasons of simplicity.
It is assumed that in the case of the analyzed solar thermal system, these costs are
relatively low compared to the other considered cash flows (e.g., the maintenance
cost is orders of magnitude lower than the investment costs). Furthermore, the cash
flow for replacement costs occurs 10-15 years after the investment is made and its
influence on the NPV is reduced because of the compound interest effect.
The UQ for the CBA input is summarized in Table 3.6.
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Table 3.6: Parameters selected for variation and their distributions for the CBA.
Parameter Distribution µ σ Unit

IC normal 700 50 EUR
m2

Parameter Distribution min. max. Unit

IR uniform 2 10 %

Variable UQ Unit

Infl ARIMA prediction %

GP ARIMA prediction EUR
kWh

Parameter UQ Unit

Qcollector BPS result kWh

3.3 Results and Discussion

3.3.1 Simple Mathematical Model

3.3.1.1 Sampling

Some of the results concerning the comparison of different sampling strategies were
published by Burhenne et al. (2011). However, the work is extended in this thesis.
Figure 3.17 shows a comparison of the different sampling techniques used to com-

pute the mean and the variance of the function with different sample sizes. Different
quantitative criteria to analyze the convergence exist and have to be selected with
respect to the accuracy requirements of the analysis. For this example, convergence
is defined to be reached when the value of the estimate is in the range of the an-
alytical value ±5% (see Table 3.7). The analytical value for the mean is 0.3̄ and
the analytical value for the variance is 0.838̄ (see also Section 3.2.5). The random
sampling shows the worst convergence to the analytical mean of the function. Latin
hypercube sampling shows the fastest convergence to the analytical mean (sample
size 16). The mean estimates derived with stratified sampling and sampling based
on Sobol′ sequences both converge for a sample size of 64. The variance estimate for
the sampling based on Sobol′ sequences results in the fastest convergence (N = 8:
0.846, +0.8%)24 whereas random and stratified sampling converge at a sample size
of 256. Although, LHS showed the fastest convergence with respect to the mean
estimate, it required a sample size of 512 until the variance estimate converged.
24Note that this result is not shown in Table 3.7.
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Figure 3.17: Comparison of the mean and variance estimates, obtained by different
sampling techniques applied to the evaluation of the simple mathe-
matical model.
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3.3 Results and Discussion

Table 3.7: Convergence of mean and variance estimates for the simple mathemat-
ical model to the analytically determined values. Gray cells indicate
estimates that have converged to the analytical value ±5%. The red
cells indicate that the estimate falls within the target range but that
convergence has not been reached. The percentages in the cells indicate
the deviation from the analytical value. The sample size in brackets
is for stratified sampling. The different sample sizes are due to the
properties of stratified sampling as explained in Section 3.2.1.

Sample
size 16 32 64 128

(144) 256 512
(529)

Mean estimate

Random 0.655
+96.4%

0.582
+74.6%

0.473
+41.8%

0.329
-1.2%

0.253
-24.1%

0.375
+12.4%

Stratified 0.201
-39.8%

0.310
-7.1%

0.341
+2.2%

0.340
+2.0%

0.328
-1.5%

0.334
+0.2%

LHS 0.338
+1.3%

0.317
-4.9%

0.333
-0.2%

0.335
+0.4%

0.333
0.0%

0.333
0.0%

Sobol′ 0.309
-7.3%

0.306
-8.1%

0.327
-1.8%

0.329
-1.3%

0.333
0.0%

0.332
-0.4%

Variance estimate

Random 0.941
+12.1%

0.653
-22.2%

0.815
-2.9%

1.034
+23.3%

0.834
-0.6%

0.846
+0.8%

Stratified 0.827
-1.4%

0.909
+8.3%

0.847
+1.0%

0.855
+1.9%

0.848
+1.1%

0.836
-0.4%

LHS 1.167
+39.2%

0.954
+13.7%

0.867
+3.3%

0.952
+13.5%

0.883
+5.3%

0.828
-1.2%

Sobol′ 0.828
-1.3%

0.815
-2.8%

0.836
-0.3%

0.840
+0.1%

0.841
+0.3%

0.839
0.0%

Empirical CDFs (ECDFs) are used to visualize the robustness (i.e., stability) of
results obtained by different sampling strategies. The sampling and model evaluation
was repeated 100 times for each sampling technique and the chosen sample size of
256. Figure 3.18 shows a comparison of the ECDFs for the simple mathematical
model. One can see that in this case, the robustness of stratified sampling and
sampling based on Sobol′ sequences is the best (i.e., ECDFs show least variability)
followed by Latin hypercube sampling. The ECDFs constructed for random sampling
show the most variability.
To further analyze the robustness, one Kolmogorov-Smirnov test is performed for

all possible combinations of the different ECDFs. All combinations of 100 different
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ECDFs result in nECDF!/((nECDF−k)! k!) = 100!/((100−2)!∗2!) = 4,950 Kolmogorov-Smirnov
tests. Table 3.8 contains the results, which confirm the findings of the visual inspec-
tion. This quantitative measure reveals that the sampling based on Sobol′ sequences
is slightly more robust than stratified sampling25.

Figure 3.18: Comparison of ECDFs for the simple mathematical model with 100
repetitions, for four different sampling techniques.

25The lower the maximumD for all ECDF combinations, the more robust is the sampling technique.
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Table 3.8: Kolmogorov-Smirnov test results for the simple mathematical model.
Sampling technique Max. D for all ECDF combinations

Random 0.1953
Stratified 0.0547

LHS 0.0820
Sobol′ 0.0508

Sampling based on Sobol′ sequences showed the fastest convergence. For the
investigated example, a sample size of 64 was enough to obtain good results for
both estimates. Moreover, the sampling based on Sobol′ sequences was the most
robust sampling technique in this example. The second best sampling technique
with respect to convergence and robustness was stratified sampling.

3.3.1.2 Stochastic Output

Figure 3.19 shows the normalized histogram of the result vector (sampling based on
Sobol′ sequences with N = 512) together with a PDF calculated with kernel density
estimates and an ECDF. The statistics for this result are summarized in Table 3.9.
No further analysis of the uncertainty is conducted for the simple mathematical
model. A more detailed analysis will be presented for the BPS model in the next
section.

Figure 3.19: PDF and ECDF for the simple mathematical model (N = 512).
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Table 3.9: Statistical summary of the result for the simple mathematical model
(N = 512).

Statistic Value
Mean 0.3319

Variance 0.8391
Standard deviation 0.9160

Minimum -1.4940
Lower (first) quartile -0.4393

Median 0.3508
Upper (third) quartile 1.0450

Maximum 2.4730

3.3.2 Building Performance Simulation Model

3.3.2.1 Sampling

Figure 3.20 compares the convergence to the mean and the variance of the solar
fraction for the different sampling strategies for the BPS model. The black horizon-
tal lines show the mean and variance values after an MC simulation with random
sampling and a sample size of 25,600. Due to this large sample size, this value can
be taken as a reference. For this example, convergence is defined to be reached when
the value of the estimate is within the range of the reference value ±5%. The refer-
ence value for the mean is 0.197 and the reference value for the variance is 5.26e-4.
The mean estimate obtained with sampling based on Sobol′ sequences converges at
a sample size of 4 (0.194, -1.5%) and the mean estimate for LHS also converges at
N = 4 (0.196, -0.7%)26. However, the mean estimates of the other sampling tech-
niques also converge for a sample size of 16. The variance estimates converge much
more slowly than the mean estimates. The variance estimate obtained with sampling
based on Sobol′ sequences converges at a sample size of 128. Stratified sampling and
LHS converge at a sample size of 256. This sample size is not sufficient to obtain
an accurate variance estimate with random sampling. The variance estimate for
random sampling converges at a sample size of 1,024 (5.48e-4, +4.2%)27.
Figure 3.21 shows the comparison of the estimated CDFs for the BPS model. The

model evaluation was repeated 100 times for each sampling technique. The sampling
based on Sobol′ sequences has the least variation, followed by stratified sampling and
LHS. The CDFs constructed for the random sampling show the most variability.
As for the simple mathematical model, the Kolmogorov-Smirnov tests are per-

formed for all combinations of the 100 different ECDFs (4,950). In this example,
26Note that these results are not shown in Table 3.10.
27Note that this result is not shown in Figure 3.20 and Table 3.10.
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Figure 3.20: Comparison of the mean and variance estimates of the solar fraction,
obtained by different sampling techniques applied to the evaluation
of the BPS model.
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Table 3.10: Convergence of mean and variance estimates for the BPS model. Gray
cells indicate estimates that have converged to the reference value±5%.
The red cells indicate that the estimate falls within the target range
but that convergence has not been reached. The sample size in brackets
is for stratified sampling. The different sample sizes (i.e., 64 and 81)
are due to the properties of stratified sampling as explained in Section
3.2.1.

Sample
size 8 16 32 64

(81) 128 256

Mean estimate

Random 0.210
+6.4%

0.195
-1.0%

0.197
-0.3%

0.197
0.0%

0.198
+0.7%

0.197
-0.2%

Stratified – 0.205
+3.9% – 0.197

0.0% – 0.197
-0.1%

LHS 0.201
+1.9%

0.198
+0.3%

0.197
+0.2%

0.198
+0.3%

0.197
-0.2%

0.197
+0.1%

Sobol′ 0.199
+1.2%

0.197
-0.1%

0.198
+0.2%

0.198
+0.3%

0.198
+0.2%

0.197
+0.1%

Variance estimate

Random 5.15e-4
-2.1%

7.98e-4
+51.7%

6.51e-4
+23.8%

4.31e-4
-18.0%

5.89e-4
+12.0%

5.81e-4
+10.6%

Stratified – 6.20e-4
+17.9% – 4.14e-4

-21.3% – 5.27e-4
+0.1%

LHS 6.31e-4
+20.1%

6.21e-4
+18.0%

4.82e-4
-8.3%

5.47e-4
+4.0%

4.07e-4
-22.6%

5.17e-4
-1.7%

Sobol′ 2.98e-4
-43.4%

3.27e-4
-37.8%

4.34e-4
-17.4%

4.74e-4
-9.8%

5.01e-4
-4.7%

5.02e-4
-4.5%

this is particularly useful because the spread of the ECDFs for stratified, LHS and
sampling based on Sobol′ sequences is similar. Table 3.11 documents the results,
which reveal that the sampling based on Sobol′ sequences is the most robust.

Table 3.11: Kolmogorov-Smirnov test results for the BPS model.
Sampling technique Max. D for all ECDF combinations

Random 0.2031
Stratified 0.0938

LHS 0.1211
Sobol′ 0.0820
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Figure 3.21: Comparison of ECDFs for the four sampling techniques for the BPS
model with 100 repetitions, for four different sampling techniques.

Sampling based on Sobol′ sequences showed the fastest convergence for both
investigated estimates (required sample size until both estimates converge: 128).
However, at a sample size of 256, all sampling strategies except random sampling
converged and produced comparable results for the mean and variance estimates.
Sampling based on Sobol′ sequences was the most robust sampling technique for
the investigated BPS model. The second-best sampling techniques with respect
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to convergence and robustness were stratified sampling and LHS. The sample size
restrictions of stratified sampling led to limitations concerning possible sample sizes.

3.3.2.2 Stochastic Output

For each simulation, one solar fraction is obtained. Figure 3.22 shows the normalized
histogram of the result vector together with a PDF calculated with kernel density
estimates and an ECDF for a sample produced with sampling based on Sobol′ se-
quences with a sample size of 256. The figure gives an indication of how the result
varies given the uncertainties in the inputs. A practical design question might be:

• What is the probability to reach a solar fraction of > 20%?

The gray area under the PDF represents the probability that the solar fraction is
> 20% and the number in the ECDF plot indicates the probability that the solar
fraction is ≤ 20%. This probability (i.e., relative frequency) is computed by dividing
the number of simulation results for which the solar fraction is ≤ 20% (nSolFrac≤20%)
by the total number of simulations (N) according to

P(SolFrac ≤ 20%) =
nSolFrac≤20%

N
. (3.11)

Hence the probability for a solar fraction >20% is (1 − 0.5898) ≈ 0.41. 41%
probability for reaching the design goal might be too low. The decision makers can
decide whether the design of the plant equipment should be changed or not. A
larger collector area and an increased tank volume would increase the solar fraction
but also require a higher investment. The results of the CBA for this design will be
presented in the course of this chapter.
In Figure 3.22, the PDF was computed using kernel density estimates. It is now

tested whether the data can be described by a normal distribution. A normality test
is conducted to find an appropriate distribution. Figure 3.23 shows the quantile-
quantile plot (Q-Q plot) of the MC simulation result. The result of the Kolmogorov-
Smirnov test28 for the MC result is D = 0.047 and p-value = 0.6248. This test result
indicates that the data is normally distributed. Hence, the PDF can be described
with

p(x) = 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
. (3.12)

The parameters for the normal distribution can be found in Table 3.12.

28The R function ks.test() is used here. More details on the test can be found in Section 2.2.2.2.
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Figure 3.22: PDF and ECDF for the solar fraction (N = 256).

Figure 3.23: Q-Q plot for the MC simulation result.
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Table 3.12: Distribution parameters for the MC simulation result.
Result Distribution µ σ

SolFrac normal 0.1973 0.02241

With the function introduced in Equation 3.12, it is possible to calculate the
answer to the defined design question with

P(SolFrac ≥ 20%) =
∫ +∞

0.2
p(SolFrac) dSolFrac (3.13)

≈ 0.4523 ∼= 45.2%.

In principle, both approaches (counting the simulation results above/below a
threshold or testing the applicability of a distribution and computing the proba-
bility based on the PDF) are applicable to compute a probability. However, there
is a risk that the distribution test yields an incorrect result and testing data for
different distributions is a time-consuming task. Therefore, in the following, only
PDFs computed with kernel density estimates and ECDFs are used to analyze MC
simulation results. Table 3.13 documents the statistics for the result. This is sup-
plementary information to the visualization.

Table 3.13: Statistical summary of the BPS result (N = 256).
Statistic Value
Mean 0.1973

Variance 0.0005024
Standard deviation 0.02241

Minimum 0.1513
Lower (first) quartile 0.1823

Median 0.1953
Upper (third) quartile 0.2113

Maximum 0.2699

3.3.2.3 Results for the Combined BPS and CBA

In the following, the results for a combined BPS and CBA are presented. The basis
is the input that was presented in Section 3.2.5.2. An analysis of the convergence
should be part of every UA. This can be simplified compared to the previous in-
vestigations on convergence. Based on the findings above, only sampling based on
Sobol′ sequences is used. Figure 3.24 shows the convergence of the estimates for
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the mean and the variance of the NPV . The horizontal lines represent the results
for the largest sample size (i.e., 1,024). These results are used as the reference (i.e.,
-6,948 EUR for the mean and 2.228e+7 EUR2 for the variance). For this example,
convergence is defined to be reached when the values of the estimates are within
the range of the reference results ±5%. Based on this criterion, the mean estimate
converges at a sample size of 4 (-6,753 EUR, -2.8%)29 whereas the variance estimate
converges at a sample size of 128.

Figure 3.24: Convergence plot for the mean and variance estimates of the NPV
(Note that the y-axes do not start at 0).

Table 3.14: Convergence of mean and variance estimates for combined BPS and
CBA. Gray cells indicate estimates that have converged to the reference
value ±5%.

Sample
size 32 64 128 256 512 1,024

Mean
estimate
in EUR

-7,206
+3.7%

-7,062
+1.7%

-7,012
+0.9%

-7,018
+1.0%

-6,946
0.0%

-6,948
0.0%

Variance
estimate
in EUR2

1.561e+7
-30.0%

1.60e+7
-28.2%

2.15e+7
-3.4%

2.20e+7
-1.2%

2.29e+7
+2.9%

2.23e+7
0.0%

Figure 3.25 shows the PDF computed with kernel density estimates and the ECDF
29Note that this result is not shown Table 3.14.
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for the NPV . The underlying sample size is 1,024 and the NPV of the additional
investment varies significantly. This massive variation is due to the significant in-
fluence of some analyzed parameters. The ECDF reveals that the probability that
the investment has a positive NPV is approximately 9% ((1− 0.911) ∗ 100%) under
the chosen assumptions. This probability will not be satisfactory in cases where the
decisions are made on the basis of monetary values rather than for environmental
reasons. With a conventional BPS and CBA, the result would have been a single
value. Depending on the assumptions, it could be a positive or negative NPV with-
out information on probabilities of the result. Table 3.15 provides the statistics for
the result of the analysis.

Figure 3.25: PDF and ECDF for the NPV (N = 1,024).

3.3.2.4 Stochastic Time Series Output

In the previous section, the solar fraction over one year was analyzed. To illustrate a
UA for time series, the heating power supplied to the building is analyzed over time.
The time step for the simulation is 60 seconds. Figure 3.26 shows the different time
series of the heating power for one day in January (January 13). The figure contains
128 time series coming from an MC simulation with N = 128. It reveals that the
uncertainty in the heating power varies over time due to the uncertain boundary
conditions. It is evident that ACH is a dominant parameter because the pattern
of the ACH schedule that was presented in Figure 3.12 is visible in the time series.
However, the interpretation of the different time series is difficult.
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Table 3.15: Statistical summary of the result for the combined BPS and CBA (N =
1,024).

Statistic Value
Mean -6,948

Variance 2.228e+7
Standard deviation 4,721
Sample minimum -15,090

Lower (first) quartile -10,330
Median -7,868

Upper (third) quartile -4,662
Sample maximum 18,630

Figure 3.26: Time series for the heating power demand on January 13.
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Figure 3.27 is a box plot representation of the time series data, where the values
from one hour are aggregated. This allows better interpretation of the distribution
of the time series data. However, the analyzed output changes quickly over time,
resulting in misleading ranges for the data corresponding to the hours 6, 13, 19 and
22. A smaller time interval might be used when constructing the boxes to overcome
this problem (e.g., 15 minutes).

Figure 3.27: Box plot for the heating power demand on January 13.

Figure 3.28 is a contour plot that indicates the probability density. In this way,
the probability that the heating power exceeds a certain value can be analyzed. A
typical application of this information is critical plant sizing. For this application,
the day with the highest peak power is analyzed. Based on the underlying data of
Figure 3.28, the probability that the peak power exceeds 23 kW between 7:00 and
7:30 a.m. can be computed.
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Figure 3.28: Contour plot indicating the probability density for the heating power
demand on January 13.

3.4 Summary

Different sampling strategies were analyzed with respect to the convergence of the
mean and variance estimates and their robustness. The performance of the tech-
niques depends on the number of input parameters (k) and the properties of the
analyzed model (e.g., nonlinearity). Overall, the sampling based on Sobol′ sequences
showed the best performance with respect to convergence of the mean and variance
estimates. Latin hypercube sampling and stratified sampling resulted also in good
convergence. The stratified sampling has restrictions with respect to possible sam-
ple sizes, which becomes a limiting aspect when the number of analyzed parameters
is high. Comparison of the ECDFs showed that the sampling based on Sobol′ se-
quences has the least variations in the ECDFs. Having the least variation proves
that this sampling technique produces the most robust results. It is surmised that
the larger the number of analyzed input parameters, the better the sampling based
on Sobol′ sequences performs in comparison to the other sampling strategies. It is
recommended to use sampling based on Sobol′ sequences when MC techniques are
applied to BPS and the sample size is limited because of computationally expensive
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models. Sampling based on Sobol′ sequences will be used for all remaining examples
in this thesis.
Different ways of conducting a UA were investigated and methods for interpreting

the results were introduced. Visualization techniques and statistics can be used to
communicate the results of a UA to decision makers. Different methods were applied
for stochastic output and for stochastic time series output. These can provide ben-
eficial information for many common BPS problems. A BPS program-independent
approach for the parallelization of an MC analysis was developed. The method-
ology was tested with different examples (simple mathematical model, BPS and a
combined BPS and CBA) that are intended to guide people who want to conduct a
similar UA. Instead of answering design questions with yes or no, they can answer
using probabilities. This increases the transparency in the design process and avoids
a false sense of validity and engineering rigor.
The different steps of a UA that were introduced require a toolchain30 to conduct

the analysis. This toolchain consists of several R scripts and has been developed as
part of the work for this thesis. For the applicability of the proposed methodology
in practice, it is a prerequisite that a UA can be set up in a reasonable time for a
variety of BPS problems. Furthermore, a methodology for UA for combined BPS
and CPA was introduced. To summarize, the main findings are:

(I) Sampling based on Sobol′ sequences results in rapid convergence and robust
results. The sample size for which convergence is reached can not be computed
a priori. Hence, a convergence test should be part of every MC simulation.

(II) Parallelization of the MC simulation and advances in computer technology
improve the applicability of the proposed approach.

(III) The introduced framework with tools and methods allows for UA that can be
set up quickly. Given the additional insights provided by a UA, this additional
effort compared to a classic BPS is reasonable.

(IV) Methods for result analysis and interpretation have to be selected in accordance
with the project requirements. In this context, it is also important to take the
knowledge of the audience of the result presentation into account and to guide
people without or with limited experience in statistics.

(V) UA provides insights on the likely variation of the simulation results and com-
mon design questions can be answered with probabilities, taking uncertain
boundary conditions into account.

(VI) Stochastic time series output can be used for realistic plant dimensioning de-
spite uncertainty in the inputs.

30Toolchain refers to a series of scripts that are used to implement the methodology.
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3.4 Summary

(VII) A way of combining BPS and CBA was presented. A UA for both provides
insight into the probabilities concerning a cost-effective design and supports
decision-making.
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4 Sensitivity Analysis

4.1 Background and Objectives

4.1.1 Literature Review

Sensitivity analysis (SA) can help to validate and calibrate models, identify critical
regions in the input parameter space, uncover research requirements and support
model simplifications (Saltelli et al., 2008, p. 11). Generally SA methods can be
classified as local or global methods. Global methods can be further subdivided
into qualitative or quantitative methods. The result of a qualitative SA can be a
ranking according to the influence of the investigated parameters on the simulation
result or a plot that provides insight on the influence of the analyzed parameters.
A quantitative SA provides the percentage of the total uncertainty that can be
attributed to the different model parameters as a result. Quantitative methods are
commonly computationally more expensive than qualitative methods.
In the following Section, different methods for performing SA are introduced and

analyzed with respect to their applicability to BPS1. The literature review is divided
according to the classification mentioned above. The different methods are briefly
explained and BPS-related studies that employ a specific method are introduced.

4.1.1.1 Local Methods

Local methods investigate a local range around a base point in the parameter space
and the corresponding change in the output. The methods are widely used for SA
(Saltelli et al., 2008, p. 11). This is also true for building research and practice
(Mara and Tarantola, 2008). In cases where the model input is uncertain, analysis
around a base point is a strong limitation, because this base point and hence the
parameter space region of interest might not be known.

Derivative-Based Methods

In a mathematical sense, the local sensitivity of an output Yi versus an input Xi

is the partial derivative ∂Yi/∂Xi (Saltelli et al., 2008, p. 11). Computing these
1Note that many more methods exist. However, the author believes that the introduced methods
include those which are most relevant to BPS.
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derivatives algebraically requires that the model is an explicit algebraic equation.
This might not be the case for typical BPS problems (Wetter, 2008, p. 8; Jacob,
2012, p. 101).
A partial derivative for a model is commonly expressed in units which depend on

the choice of units for the output and the input of the model (e.g., kWh/K when the
influence of a temperature set point on the annual energy consumption is analyzed.).
This leads to the problem that the results of the analysis are difficult to compare
when units for different quantities are involved. A ranking according to the influence
requires normalization of the SA measures.
Rao and Haghighat (1993) perform a derivative-based SA for a multi-zone airflow

model. They point out that their approach has advantages with respect to the com-
putational expense when compared to other SA techniques. However, they illustrate
the problems of this approach when applied to nonlinear models.

One-at-a-time methods

In the literature, one-at-a-time (OAT) methods for SA can often be found (Saltelli
and Annoni, 2010). The traditional OAT method has similar capabilities to the
derivative-based method2 but does not require analytical computation of the deriva-
tive. Instead, the analyzed parameters are varied from their nominal value (i.e., base
point) to another value. If this variation is small, OAT is a local method3. This is
done consecutively while all other parameters are set to their nominal value (Saltelli
and Annoni, 2010). The estimator for the partial derivatives is ∆Yi/∆Xi.
The OAT design is illustrated by the following matrices

Min =



x
(0)
1 x

(0)
2 · · · x

(0)
k−1 x

(0)
k

x
(1)
1 x

(0)
2 · · · x
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1 x
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... . . . ...

...
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(0)
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(0)
1 x

(0)
2 · · · x

(0)
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k


=



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1



2The result of an OAT method is an approximation to the partial derivative ∂Yi/∂Xi.
3In cases where the variation is larger, it is not a local method anymore.
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Mout =



y(0)

y(X1)

y(X2)

...

y(Xk−1)

y(Xk)


where a 0 in the input matrix (Min) indicates that the parameter has its nominal
value and a 1 indicates that it is perturbed. The output matrix (Mout) contains the
corresponding results. The sensitivity of a parameter Xi is (Spitler et al., 1989)

∆Yi
∆Xi

= y(0) − y(Xi)

x
(0)
i − x

(1)
i

. (4.1)

This ratio is often called the influence coefficient. It can be normalized to allow
comparability between different analyzed parameters (e.g., % output change/% in-
put change) (Spitler et al., 1989). OAT methods do not capture the interactions
between the input parameters and are not suitable for global investigations of non-
linear models (Saltelli and Annoni, 2010). Figure 4.1 shows a three-dimensional
parameter space and the points for which a model is evaluated in an OAT SA.
Spitler et al. (1989) present an OAT SA for residential buildings. They approx-

imate the partial derivatives with an OAT design and call the results for the in-
vestigated parameters influence coefficients. They use the BPS program BLAST
and introduce methods to normalize the influence coefficients. Furthermore, Spitler
et al. (1989) point out limitations when this method is used for nonlinear models
but for their case study they state that the introduced error is acceptable.
Lam and Hui (1996) perform an SA for office buildings in Hong Kong and follow

Spitler et al. (1989) in the use of influence coefficients. They employ DOE-2 as the
BPS program and use influence coefficients with units and normalized influence co-
efficients. They analyze the influence of about 60 different parameters on the annual
electricity consumption and peak electricity demand. The most influential parame-
ters are the occupancy density, lighting load, summer thermostat set point, supply
fan efficiency, fan static pressure, coefficient of performance (COP) of the chillers,
chilled water supply temperature, chilled water design temperature difference and
chilled water pump efficiency. Lam and Hui (1996) point out that the estimated
error of the result is obtained by multiplying the estimated error in the input by the
influence coefficient.
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base point
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x3

X1
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Figure 4.1: OAT design in a three-dimensional parameter space. This design would
require 4 model runs (indicated by the filled circles).

It is obvious that the implementation of an OAT method is straightforward and
can be performed with any BPS program without employing additional software.
That might be one reason why OAT is popular among practitioners despite the
mentioned shortcomings. Another reason might be the lack of simple tools and
methodologies which are applicable to a wide range of different BPS problems.

Factorial Design

Full factorial design is a suitable method for SA when the number of parameters is
small. The required sample size is

N = lk (4.2)

where l is the number of levels each parameter can take and k is the number of
investigated parameters (Saltelli et al., 2008, pp. 71-72). In most cases, two levels
are used for full factorial designs when k is high because higher-level designs4 are too
computationally expensive (Saltelli et al., 2008, p. 72). According to Equation 4.2,
a two-level design for 10 parameters results in 210 = 1,024 simulation runs and 20
parameters require 220 = 1,048,576 simulation runs. Figure 4.2 shows a full factorial
design in a three-dimensional parameter space.
The main effect (ME i) of a factorial design can be calculated by subtracting the

average result of all simulation runs for which Xi was at its low level (Ȳ −) from the
4When more than two levels are used for factorial design it is not a local method anymore.
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Figure 4.2: Full factorial design in a three-dimensional parameter space. This de-
sign would require 8 model runs (indicated by the filled circles).

average result of all simulation runs for which Xi was at its high level (Ȳ +) (see
Equation 4.3; Box et al., 2005, pp. 178-181).

ME i = Ȳ + − Ȳ − (4.3)

It is also possible to compute higher-order interactions (i.e., interactions between
input parameters) (Box et al., 2005, pp. 181-183). This is an advantage of factorial
designs compared to OAT methods.
The disadvantage of the high number of required simulations can be reduced

by using fractional factorial design. The basis is full factorial design but omitting
evaluation at some points. Different fractional factorial designs exist. The reduction
of required simulation runs comes at the cost that the analysis loses its power for
investigating higher-order effects (i.e., depending on the specific design, some effects
are confounded). The interested reader is referred to Box et al., 2005, pp. 235-279
for more details.
Fürbringer and Roulet (1995) compare factorial analysis with an MC method

and use a 3-storey building as an example. They focus on air-flow modeling and
analyze the influence of 23 parameters with respect to the air exchange in four zones.
Fürbringer and Roulet conclude that factorial analysis is superior to the MC method
that they used with respect to the computational cost and the inferences that can
be drawn from the results.
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Langner et al. (2011) performed an SA with a two-level fractional factorial anal-
ysis to quantify the influence of building parameters on the energy demand in three
commercial high-rise buildings. They perform an SA for four different climate zones
(hot and dry, warm and humid, warm and dry, cool and humid) using typical me-
teorological year (TMY) data. In their study, Langner et al. analyze the influence
of 16 parameters with respect to the first-order influence and the second-order in-
fluence (i.e., two-factor interactions) on the electricity consumption and demand.
They identify the equipment and lighting power density, the chiller efficiency, the
window U-values, the mass of the furnishings in the zone and the static pressure
of the supply fan as the most influential parameters. The conclusion derived from
this study is that these influential parameters should be of special interest during
building audits and the calibration process of BPS simulation models.

4.1.1.2 Global Methods

In most cases, global methods represent the best choice for conducting an SA for a
BPS model because they do not rely on linear models. Instead, the parameter space
is analyzed with respect to the corresponding model output. Several different global
SA methods exist and are introduced in the following.

Scatter Plot Method

On the basis of the results of an MC simulation as described in Chapter 3, a simple
SA can be conducted by using graphical methods such as scatter plots. Scatter plots
belong to the qualitative category of SA methods. Each sample value and its corre-
sponding result (e.g. x(1)

1 , y(1); ... ; x(N)
1 , y(N)) is plotted in a scatter plot. Important

parameters can be identified by analyzing the pattern in the scatter plots. A uniform
cloud of points is an indicator of a non-influential parameter whereas a non-uniform
distribution of points indicates an influential parameter (Saltelli et al., 2008, pp.
21-23). Scatter plots can also reveal information about the linearity or nonlinearity
of a model. They are only applicable for a limited number of investigated parame-
ters, because each plot has to be visually inspected. Another prerequisite is that a
few very important parameters exist that are dominant enough to generate a visible
pattern.

Elementary Effects Method

The elementary effects (EE) method5 is well suited to screening applications with
a moderate computational cost compared to other global methods. Screening aims
to identify non-influential model inputs and can result in ranking of the analyzed

5This method is sometimes also called the Morris method.
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parameters. The method was introduced by Morris (1991). In this first version,
the input parameters are moved OAT6 with a step of ∆i. The EE is calculated
according to

EE i(X) = Y(x1, ..., xi−1, xi + ∆i, xi+1, ..., xk)−Y(x1, ..., xk)
∆i

(4.4)

where Y(·) is the result of the evaluated function at the coordinates indicated within
the parentheses and ∆i is the step size in the domain of the input parameter (Campo-
longo et al., 2011). To explore different regions of the parameter space, r trajectories
are evaluated. The average of the effects (µi) is (Campolongo et al., 2011)7

µi =
∑r
j=1 EE i(X(j))

r
. (4.5)

Figure 4.3 illustrates a trajectory for a three-dimensional parameter space. k is
the number of analyzed parameters and each trajectory has k + 1 points that are
moved OAT in the analysis (the roman numerals in brackets (X(roman numeral))
indicate the steps of the analysis). In Figure 4.3, the EE for parameter X1 is

EE1 = Y (X(II))− Y (X(I))
∆1

.

A second measure serves as indicator of parameter interactions and nonlinearity
(Campolongo et al., 2011):

σi =
∑r
j=1(EE i(X(j))− µi)2

r
(4.6)

The EE method requires r(k + 1) simulation runs.
The method is widely applied in BSP research. De Wit and Augenbroe (2002) use

the EE method to screen 89 parameters. They analyze the thermal comfort perfor-
mance and derive a table with the most influential parameters in decreasing order
of their importance. They perform a more detailed UA for these most influential
parameters.
Brohus et al. (2009) use the EE method to screen parameters for a BPS of a

residential building. They analyze eleven parameters with the EE method and
conduct a further analysis for the seven most influential ones. One result of the
study is that the most influential parameters are related to occupant behavior.

6The EE method is repeated OAT. The repetition resolves the shortcomings of traditional OAT
methods.

7Note that the notation used by Campolongo et al. (2011) has been slightly modified to make it
nonambiguous.
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Figure 4.3: Example of a trajectory in a three-dimensional parameter space. The
filled circles indicate model runs (source: adapted figure based on Cam-
polongo et al. (2011)).

Corrado and Mechri (2009) analyze the influence of 129 input parameters on the
result of an energy rating by means of the EE method. They use the monthly method
of the ISO 13790 standard as their model (ISO 13790, 2008). The parameters with
the greatest influence in the study of Corrado and Mechri are the indoor temperature,
the air change rate, the number of occupants, the metabolism rate and the equipment
heat gains.

Variance-Based Methods

Employing variance-based (VB) methods allows the exploration of uncertain input
parameters over the range of interest8. Interactions between uncertain parameters
are fully accounted for (Campolongo et al., 2011). The method is independent of
the model under consideration9. It is based on the idea of analyzing the variance of
the result and attributing the variance to the different input parameters (variance
decomposition). The result of a complete analysis of variance (ANOVA) can be
2k sensitivity indices (first order and all higher orders) (Saltelli et al., 2010). These
indices are defined as the ratio of the variance of interest to the total variance, where
the variance of interest can be the first-order or any higher-order variance. For most

8This range is described by the PDFs of the input parameters.
9The computational cost of a model is a constraint. However, this can be targeted with efficient
sampling techniques and parallel computing (see Chapter 3).

88



4.1 Background and Objectives

applications, two sensitivity indices per input parameter are sufficient. These are
the first-order sensitivity index and the total sensitivity index.
The first-order sensitivity index is defined as

Si = VarXi(EX∼i(Y |Xi))
Var(Y ) (4.7)

where VarXi(·) is the variance of argument (·) taken over the parameter Xi, EX∼i(·)
is the mean of argument (·) taken over all parameters except Xi, and Y is the model
output (Saltelli et al., 2010). Si is a normalized measure and can vary between 0 and
1. It expresses the percentage of variance in the result that can be attributed to the
variance of parameter Xi. Hence, VarXi(EX∼i(Y |Xi)) is the expected reduction of
the variance if Xi were treated as a single-value estimate (Saltelli et al., 2010). When
all Si are computed, conclusions on the model properties can be drawn. In general,∑
Si ≤ 1 and if

∑
Si = 1 then the model is additive (i.e., no interactions between

input parameters). Furthermore, 1 −
∑
Si can be understood as an indicator of

interactions between the input parameters (Mara and Tarantola, 2008).
The total sensitivity index measures the total influence of the analyzed parameter

on the result. This includes the first-order and all higher-order effects10. It is defined
as

STi = EX∼i(VarXi(Y |X∼i))
Var(Y ) (4.8)

where X∼i is the matrix of all parameters except Xi (Saltelli et al., 2010). The term
EX∼i(VarXi(Y |X∼i)) is the expected variance that would remain if all parameters
apart fromXi were treated as single-value estimates (Saltelli et al., 2010). Note that,∑
STi ≥ 1 because the interaction effects are counted for each parameter (Homma

and Saltelli, 1996).
Different ways of calculating the sensitivity indices exist. They can be calculated

analytically or with the help of estimators within an MC setting. The latter is the
relevant approach for typical BPS. With the estimators employed in this thesis, the
computational cost11 is N(k + 2). The VB method can be applied to the most
influential parameters derived from an SA screening method (e.g., the EE method)
in cases where VB SA for all parameters costs too much computational power.
Eisenhower et al. (2011) and Mara and Tarantola (2008) use a VB method in

combination with a meta-model. Both studies will be described below in Section
4.1.1.4.

10The higher-order effects are due to interactions with other model parameters.
11More details will be given in the course of this chapter.
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Monte Carlo Filtering

MC filtering (MCF) isolates those inputs of the model realizations of an MC sim-
ulation that produce the desired result (Saltelli et al., 2008, pp. 183-185). Hence,
the method is used to determine the particular subset of the model parameter space
that drives the model output into specific regions. Figure 4.4 illustrates MCF.

(X | B)

(X | B)

B

B

Simulation input Simulation output

Figure 4.4: Mapping of input and output subsets. B is the desired region of the
simulation output and (X|B) is the subset of the simulation inputs
that results in B. In this example (X|B) is compact, which might not
always be the case, depending on the analyzed simulation (source: own
figure based on Saltelli et al., 2008, p. 40).

One ECDF for the full set of simulations, one for the behavioral subset (X | B)
and one for the non-behavioral subset (X | B) are plotted for each input parameter.
The differences between the ECDFs provide insight on the influence of a parameter
in driving the simulation output into a certain region. This application is called
regionalized SA (Saltelli et al., 2008, p. 184). The larger the difference between
the ECDFs of (X | B) and (X | B), the greater the influence of the parameter for
which the ECDF is constructed. In addition to visual inspection, a Kolmogorov-
Smirnov test can provide a quantitative measure of the maximum distance between
the ECDFs (see Section 2.2.2.2).
With MCF, it is possible to infer the necessary design and settings of the technical

systems that lead to the desired outcome (e.g., annual energy demand less than a
certain threshold). This might lead to design improvements as well as to more
insights into the building and HVAC characteristics. The computational cost of
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MCF depends on the convergence of the MC simulation (see Chapter 3). Although
MCF appears to be of high value to supplement the typical building design process,
no literature has been found on its application in the BPS context12.

4.1.1.3 Group Sampling

In the previous sections, different techniques were introduced, some of which are
computationally expensive. The computational expense depends on the number of
analyzed parameters (k). In cases where (k) is too high for a given model and its
computational cost, a group sampling technique can be applied. When applying
group sampling, all parameters are randomly subdivided into different groups. The
input parameters of one group are all treated as one input and perturbed correspond-
ingly. If one group does not have much influence, the analyst can conclude that no
parameter within this group is influential. The parameters in the non-influential
groups are not analyzed further. All other parameters are randomly assigned to
new groups and a new analysis of these groups is conducted. Depending on the
number of parameters and the number of groups, the analysis is repeated until the
influential parameters have been identified (Saltelli et al., 2008, pp. 89-96). Group
sampling works for different SA methods. It can be applied as the first step of an
SA if the number of analyzed parameters exceeds the capabilities of an SA method.
Rahni et al. (1997) use group screening to identify 23 influential parameters out

of 390 parameters involved in the analysis. They employ the BPS program CLIM
2000 for the simulation of a test-cell building and use a regression model for the SA.
The analyzed model output is the indoor air temperature.

4.1.1.4 Meta-Models

As mentioned above, many BPS models are computationally expensive. Therefore it
is appealing to construct a meta-model for the original model. This meta-model aims
to be computationally cheaper. Once a reliable meta-model has been identified, the
analysis can be performed with this less computationally demanding meta-model.
The prerequisite for fitting a meta-model is data. This data can be obtained from
measurements or from an MC simulation. Different ways to construct meta-models
exist. Local approximation methods (e.g., Taylor series) aim to fit a function that
matches for data points at a base point and in the nearby region. Interpolation
methods are used to find a function (i.e., polynomial and its coefficients) that rep-
resents all data points and the region between data points for the entire domain
of the data. Regression and smoothing methods are used to fit models for many

12An exception is a paper that was published in the framework of this thesis (Burhenne et al.,
2013a).
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data points (Saltelli et al., 2008, p. 212). However, a meta-model is an approxi-
mation of another model. This introduces an error and hence uncertainty into the
meta-model predictions. When MC simulations are used to produce the data for
which the meta-model is constructed, the convergence of the MC simulation is very
important to avoid incorrect analysis. In principle, all SA methods can be applied
for a meta-model-based analysis.
Mara and Tarantola (2008) perform an SA using a meta-model-based technique.

They use LHS to generate the samples and fit a polynomial to the MC result.
Mara and Tarantola (2008) use this polynomial to compute the first-order sensitivity
indices.
Eisenhower et al. (2011) conducted a meta-model-based SA for a non-residential

building modeled with EnergyPlus. They use a response surface as a meta-model
that is constructed by support vector regression using Gaussian kernels. Eisenhower
et al. analyzed 1,009 parameters in their study and use the total sensitivity based on
the derivatives of the meta-model. They state that in their experience, BPS models
are primarily additive13 (i.e., no interactions between parameters).
A disadvantage of using the meta-model technique is that it requires a new model

in addition to an existing model. In most cases, analysts are familiar with BPS
models and know the underlying concepts and physical equations. A meta-model
might employ concepts with which the analyst is not familiar. This can lead to
misinterpretation of the model and its results. Furthermore, separate validation of
the meta-model might become necessary.

4.1.2 Objectives

The most general and most applicable methods for BPS will be selected from the
introduced methods. The criteria are the applicability for typical BPS problems
with respect to computational costs, the effort required to set up the analysis and
additional inferences compared to a classical BPS. The developed methodology will
be demonstrated by means of a case study to analyze its performance and guide
practitioners.

4.2 Methodology
Different SA methods were introduced in Section 4.1. In general, different SA ap-
plications can be distinguished (Saltelli et al., 2008, pp. 156-157):

(I) Factor14 prioritization (FP) is the identification of the most influential
factors and often results in ranking according to the influence of the parame-

13This will be analyzed in the course of this thesis.
14Saltelli et al. (2008) use "factor" when they refer to a model input parameter.
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ters on the result. This can be used to identify research needs, decide which
parameters have to be handled with care because of their influence and which
input parameter uncertainty needs to be reduced to reduce the uncertainty in
the results.

(II) Factor fixing (FF) is the opposite of FP. The aim is to identify non-influential
parameters. The result of FF can be the identification of parameters that are
not further analyzed in a subsequent SA. Furthermore, this SA application is
helpful when models are to be simplified without losing accuracy.

(III) Variance cutting (VC) aims to reduce the variance of the result. Hence, the
amount of variance that is caused by an input needs to be quantified. This SA
application can be valuable in risk analysis to identify the required boundary
conditions for a system to be operated without errors or failure.

(IV) Factor mapping (FM) identifies the regions of model parameter space that
produce the desired result. The desired result is often defined by a threshold.

A single method that is applicable for all SA applications does not exist. However,
each of the SA applications can be interesting in a BPS context. Furthermore,
the computational expense of a model might introduce restrictions affecting the
method selection. Therefore, the methodology developed in the course of this chapter
involves different methods. Some methods are suitable for only one SA application
and others are useful for more applications. Given common BPS problems and their
structure, only global methods are the focus of this thesis. Table 4.1 summarizes
the findings concerning global SA methods from the literature review and illustrates
the capabilities of the introduced methods. Furthermore, it is specified for which
SA applications the methods can be used.

Table 4.1: Overview SA methods (source: partly based on Saltelli et al., 2008, p.
273).

Method SA
application

Computational
cost

Higher order
effects

Non-
linearity

Scatter
plots FM low yes yes

Elementary
effects FF low yes yes

Variance
-based FP, FF, VC high yes yes

MC
filtering FM low yes yes
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The most appropriate SA methods for BPS are further analyzed and combined
into an overall methodology in the following. The scatter plot method is part of the
methodology because it can provide a first impression concerning model structure
and sensitivities. Furthermore, its implementation is a straightforward procedure
on the basis of the MC results obtained in a UA. The variance-based method is
selected because of its general applicability for different SA applications. The EE
method is used for screening purposes (i.e., FF application) when the use of the
VB method is not possible because of a large number of analyzed parameters and
computationally expensive models. The MCF method is selected to be part of the
methodology because it provides valuable FM insights. Group sampling and meta-
models can potentially be used in combination with all SA methods. However, given
the structure and the capabilities of the proposed methodology, their usage may not
be necessary. Therefore these techniques are not further analyzed in this thesis.

4.2.1 Scatter Plot Method

The scatter plot method as introduced in Section 4.1 can be extended to allow
easier interpretation. Saltelli et al. describe a method called Conditional Variances
– Second Path to supplement scatter plot results (Saltelli et al., 2008, pp. 21-23). Its
implementation is a straightforward process and it requires only one MC simulation
as used for the UA in Chapter 3. To illustrate the method, the following generic
model is introduced:

Y = f(X1, X2, ... , Xk) (4.9)

As already mentioned, an influential model input is identified in a scatter plot by
the existence of a shape or pattern in the points.
The following steps have to be conducted for each parameter Xi:

(I) The range of Xi is divided into several slices (each slice has an equal number
of points)15.

(II) The mean value of Y (Xi) is determined in each slice (see Equation 2.2). The
mean value for each slice is plotted in the scatter plot with a different color to
aid the visual inspection.

(III) The variance of the mean values of Y (Xi) over all slices is calculated (see
Equation 2.3).

The mean values of Y (Xi) allow easier identification of a pattern. The calculated
variance is used as a sensitivity measure of parameter importance. The higher the
15The number of slices is on the order of ten. It should be selected depending on N to ensure an

equal number of points in each slice.
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variance, the more influential is the parameter investigated. This information can
be used to obtain an initial ranking of the analyzed parameters. This approach
applies the same underlying concept as the variance-based method (Saltelli et al.,
2008, pp. 160-161). However, parameter rankings based on the VB method should
be preferred because they are more accurate.

4.2.2 Elementary Effects Method

The basics of the EE method have been presented in Section 4.1. The original EE
method has been extended and improved by several researchers. In the context of
this thesis, an improved design is used that is proposed by Campolongo et al. (2011).
Campolongo et al. (2011) showed by numerical experiments with five different test
functions that this design is superior to other designs for the EE method. It is based
on so-called radial sampling instead of the trajectory-based design of the original EE
method. Figure 4.5 illustrates a radial design.

X(I)
X(II)

X(III)

X(IV)

X1

X2

X3

Figure 4.5: Example of a radial sample in a three-dimensional parameter space.
The filled circles indicate model runs and the roman numerals in brack-
ets (X(roman numeral)) are the row numbers of the block as shown in
Figure 4.6 (source: adapted figure based on Campolongo et al. (2011)).

The basis of the design are two sampled matrices A and B (Figure 4.6 1 ) with
aji and bji (j indicates the row number and i the column number) as elements. The
values of these matrices are used to construct the radial design for the EE method.
Each block (r) contains the coordinates of one radial in the parameter space (Figure
4.6 2 ). The number of rows in each block (i.e., number of points in the parameter
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space that are evaluated) is k + 1. Typically r is in the range of 4-8 (Campolongo
et al., 2011). The required number of simulations for this version of the EE method
is r(k + 1) as for the original version.
One result is obtained for each row of the blocks (Figure 4.6 3 ). The EE i are

calculated on the basis of the parameter values of the blocks and these results.

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43

a11 a12 a13
b11 a12 a13
a11 b12 a13
a11 a12 b13

a21 a22 a23
b21 a22 a23
a21 b22 a23
a21 a22 b23

a31 a32 a33
b31 a32 a33
a31 b32 a33
a31 a32 b33

a41 a42 a43
b41 a42 a43
a41 b42 a43
a41 a42 b43

y1
y2
y3
y4

y5
y6
y7
y8

y9
y10
y11
y12

y13
y14
y15
y16

1 2 3

Figure 4.6: Radial design for the elementary effects method.

Campolongo et al. (2011) change the calculation of µi slightly by using the absolute
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value of EE i and call the statistic µ∗i (see Equation 4.10)16. This adjustment allows
application of the EE method to non-monotonic models.

µ∗i =
∑r
j=1

∣∣∣EE i(X(j))
∣∣∣

r
(4.10)

In Figure 4.5 it can be seen that the distance between the points varies. This is
different to the original EE method, where ∆i is constant. Therefore, the EE i have
to be calculated differently than for the original design (Campolongo et al., 2011).
As an example, the EE i of the parameter in the first column (e.g., for parameter
X1) in Figure 4.6 are calculated (the superscript in brackets EE i(X(superscript)) is
the block number):

∣∣∣EE1(X(1))
∣∣∣ =

∣∣∣∣ y2 − y1
b11 − a11

∣∣∣∣∣∣∣EE1(X(2))
∣∣∣ =

∣∣∣∣ y6 − y5
b21 − a21

∣∣∣∣∣∣∣EE1(X(3))
∣∣∣ =

∣∣∣∣ y10 − y9
b31 − a31

∣∣∣∣∣∣∣EE1(X(4))
∣∣∣ =

∣∣∣∣y14 − y13
b41 − a41

∣∣∣∣
As explained in Section 3.2.1, the samples can be drawn by using sampled numbers

in the interval [0,1] and transforming them with an inverse cumulative distribution
function into any desired range. If this is the case, the basis of the values for all
x needs to be the values before the transformation (i.e., the values in the interval
[0,1]).
For the calculation of σi, µi is replaced by µ∗i (Equation 4.11).

σi =
∑r
j=1(EE i(X(j))− µ∗i )2

r
(4.11)

The results can be presented graphically by plotting µi against σi. In this plot, a
line can be drawn that is defined as

µ∗i = ±2 σi√
r
. (4.12)

Points above this line indicate that the analyzed parameter is involved in inter-
actions with other parameters or the model contains nonlinear effects (de Wit and
Augenbroe, 2002).
16Note that the notation used by Campolongo et al. (2011) has been slightly modified to make it

nonambiguous.
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4.2.3 Variance-Based Method

The principles of the VB method were introduced in Section 4.1. It is the most
general SA method and can be applied for three SA applications (i.e., FP, FF and
VC). FP is linked to the first-order sensitivity indices (Si) and FF and VC are
linked to the total sensitivity indices (STi) (Saltelli et al., 2008, pp. 42-45). In the
following, the details of the variance decomposition are briefly introduced17. The
basis is the functional decomposition of a square-integrable function

Y = f(X1, X2, ..., Xk) (4.13)

over the k-dimensional unit hypercube (Ω) (Saltelli et al., 2010). Furthermore, all Xi

are uniformly distributed over the interval [0,1]. The decomposition of this function
into a sum of functions is

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + ...+ f12...k (4.14)

where fi = fi(Xi), fij = fij(Xi, Xj) etc. for all 2k terms including f0 (Saltelli et al.,
2010). The functions are

f0 = E(Y )
fi = EX∼i(Y |Xi)− E(Y )

fij = EX∼ij (Y |Xi, Xj)− fi − fj − E(Y )
(4.15)

etc. for higher orders (Saltelli et al., 2010). The relations between these functions
and the partial variances are

Vari = Var(fi(Xi)) = VarXi(EX∼i(Y |Xi))
Varij = Var(fij(Xi, Xj))

= VarXiXj (EX∼ij (Y |Xi, Xj))−VarXi(EX∼i(Y |Xi))−VarXj (EX∼j (Y |Xj))
(4.16)

etc. for higher order terms (Saltelli et al., 2010). All terms are linked by (Saltelli
et al., 2010)

Var(Y ) =
∑
i

Vari +
∑
i

∑
j>i

Varij + ...+ Var12...k. (4.17)

By dividing both sides of Equation 4.17 by Var(Y ) one obtains (Saltelli et al.,
2010)

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + ...+ S12...k. (4.18)

17For more details, the interested reader is referred to Saltelli et al. (2010).
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The relations for the higher-order terms in Equations 4.14-4.18 only hold if the
parameters are independent (Saltelli et al., 2010). As mentioned in Section 4.1,
the first-order (Si) and total (STi) sensitivity indices are sufficient for most com-
mon analyses. Therefore this thesis focuses on these two sensitivity indices. Several
estimators and different experimental set-ups for these two estimators exist. A per-
formance comparison of different designs can be found in Saltelli et al. (2010). For
brevity, only the design and the estimators with the best performance are intro-
duced in the following. Figure 4.7 provides an overview of the experimental set-up.
Similarly to the EE method, two sampled matrices A and B are used as the basis
for the experimental design (Figure 4.7 1 ). The elements of these matrices are used
to construct other matrices that contain the simulation inputs. These matrices are
called A(i)

B . In the A(i)
B matrices, all columns are from matrix A except the column

i that is from matrix B (Figure 4.7 2 ).
The equations for Si and STi were introduced in Section 4.1 (Equations 4.7 and

4.8). Estimators for VarXi(EX∼i(Y |Xi)) and EX∼i(VarXi(Y |X∼i)) are required to
compute the sensitivity indices. These are (Saltelli et al., 2010)

VarXi(EX∼i(Y |Xi)) = 1
N

N∑
j=1

f(B)j
(

f
(
A(i)

B

)
j
− f(A)j

)
(4.19)

and

EX∼i(VarXi(Y |X∼i)) = 1
2N

N∑
j=1

(
f(A)j − f

(
A(i)

B

)
j

)2
. (4.20)

The variance-based method requires N(k+ 2) simulations, with N being the MC
sample size and k the number of analyzed parameters.

4.2.4 Monte Carlo Filtering

MCF was introduced in Section 4.1. In the following, more information on the
details is provided. Performing MCF consists of the following steps (Saltelli et al.,
2008, pp. 39-40):

(I) Separating the MC simulation output and the corresponding simulation inputs
into two subsets. One is the behavioral subset (i.e., where the desired design
goal is reached; B) and the remaining is the non-behavioral subset (i.e., where
the desired design goal is not reached; B).

(II) Plotting the ECDFs for each input parameter for the full set of simulations,
the behavioral subset and the non-behavioral subset.

(III) Comparing the plots and performing a visual inspection of the difference in
the ECDFs.
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a11 a12 · · · a1k
a21 a22 · · · a2k...

... . . . ...
aN1 aN2 · · · aNk

b11 b12 · · · b1k
b21 b22 · · · b2k...

... . . . ...
bN1 bN2 · · · bNk

b11 a12 · · · a1k
b21 a22 · · · a2k...

... . . . ...
bN1 aN2 · · · aNk

a11 b12 · · · a1k
a21 b22 · · · a2k...

... . . . ...
aN1 bN2 · · · aNk

a11 a12 · · · a1k
a21 a22 · · · a2k...

... . . . ...
aN1 aN2 · · · aNk

a11 a12 · · · b1k
a21 a22 · · · b2k...

... . . . ...
aN1 aN2 · · · bNk

1 2

Figure 4.7: Experimental design for the variance-based method.

(IV) Performing a Kolmogorov-Smirnov test (two-sided) to compare the two subsets
for each analyzed parameter.

If the ECDFs are visually different and the maximum difference between the two
cumulative distributions computed by the Kolmogorov-Smirnov test is large, the
analyzed simulation parameter is influential in driving the simulation output into
certain regions. This maximum difference is

DXi = max
∣∣∣F (Xi | B)− F (Xi | B)

∣∣∣ (4.21)
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where F(X | B) is the ECDF of the behavioral subset and F(X | B) is the ECDF
of the non-behavioral subset (Saltelli et al., 2008, pp. 184-189). Furthermore, the
EDCFs provide insight on the maximal and the minimal values of the results for the
complete set, the behavioral subset and the non-behavioral subset.

4.2.5 Overall Sensitivity Analysis Methodology

All SA methods are implemented in R. The implementation is based on the R scripts
described in Section 3.2.2. The scripts are extended18 to allow the generation of the
matrices that are required for the EE method and the VB method (see Figure 4.6
and Figure 4.7). Furthermore, the script that collects the results from the subfolders
(CollectResults.R) is extended and computes the estimators as described in the
previous sections.
Figure 4.8 is a flow chart for conducting an SA for a BPS according to the proposed

methodology. The start of an SA is the definition of the outcome and the require-
ments of the analysis. This can be based on an agreement between the modeler and
the client. Based on these requirements the relevant SA applications (i.e., FP, FF,
VC and FM) can be identified. Depending on the relevant SA applications some
steps of the analysis might be skipped. Sometimes the required applications cannot
be selected a priori. In these cases the SA can be terminated once the requirements
are fulfilled.

4.2.6 Case Study

The case study presented in Chapter 3 focused on building design. The analysis
in the following example demonstrates how SA can support the energy-efficient op-
eration of buildings. In this case study, an approach to implement energy-saving
measures using the proposed SA methodology with a BPS model and data analy-
sis of measured data from the building is proposed. The building that is analyzed
is a large non-residential building19 for which detailed measurements are available.
The SA methodology that was introduced in the previous sections is used to de-
termine those parameters and variables that influence the building’s heating energy
consumption most. This information is employed to improve building operation.
Furthermore, the MC simulations of the building are used to calculate potential en-
ergy savings for operational improvements and the corresponding uncertainty. One
energy-saving measure is implemented in the real building and the result of the
implementation is analyzed using measured data.

18The scripts were partly developed in cooperation with Olga Tsvetkova (Tsvetkova, 2011).
19The building served as a demonstration building in the Building EQ project (Neumann and Jacob,

2010).
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Figure 4.8: Flow chart of the SA methodology.
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In Figure 4.9, the structure of the proposed application of the SA methodology to
improve building operation is illustrated. Influential parameters are identified with
the SA methodology and based on this information, building operation strategies are
developed. The decision about which operational changes should be implemented
can depend on the budget, building-specific requirements, realizable savings20 etc. A
UA is conducted to analyze the saving potential due to the improved control strategy,
and the corresponding uncertainty. Therefore, two additional MC simulations are
made (i.e., one MC simulation with the improved control strategy and one with the
old strategy). On the basis of these MC simulations, the potential energy savings
and the corresponding uncertainty are analyzed. Depending on the results, the
improved control strategy can be implemented in the building. The final step is to
analyze the measurements to verify the heating energy savings.
The building simulated is a typical German office building of the 1980’s. About

90% of the rooms are used as offices, mostly single-occupant offices. The building
is equipped with sensors (e.g., outdoor temperature, heating energy consumption,
room temperatures, control signals, solar irradiance) to allow validation of the sim-
ulation. The main building parameters are shown in Table 4.2 and Figure 4.10 is a
floor plan of the building. The heat is emitted by radiators equipped with thermo-
static valves. Some rooms are cooled by split units and one simulation zone has an
air handling unit (AHU) with heat recovery and a heating coil. The heating energy
is provided by a district heating system.

Table 4.2: Building parameters.
Parameter Value Unit

A
V (envelope area to volume ratio) 0.28 m2

m3

U -value (mean U-value) 0.74 W
m2K

Awin (total window area) 3,102 m2

ANFA (net floor area) 21,117 m2

For SA, appropriate but simple models for BPS are often better suited than
very detailed and hence computationally expensive models. For this case study,
a resistance-capacity network is used to model the building. The model was de-
veloped within the framework of a Bachelor thesis (Elci, 2010). In this model, a
wall is modeled with three thermal resistances and two thermal capacitances. Heat
gains (e.g., gains from appliances, occupants, HVAC equipment etc.) are distributed
to the different temperature nodes (e.g., air temperature and surface temperature
nodes) of the model. The building envelope model is a simplified version of the
20The methodology for combined BPS and CBA could be also applied in this context.
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Figure 4.9: SA methodology employed to improve building operation.

model introduced in VDI 6007 Part 1 (2007). Simplifications include the treatment
of long-wave radiation exchange and inter-zonal air exchange. Components from
the Modelica Standard Library (MSL) are used as the basis for modeling whenever
possible. The same radiation processor as for the case study in Chapter 3 is used.
More details of the modeling can be found in Elci (2010) and in Burhenne et al.
(2010a).
The building is modeled in 5 different zones which are connected by internal walls.

The usage of the zones, their net floor areas (ANFA) and their plant equipment can
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Figure 4.10: Floor plan of the building.

be found in Table 4.3.

Table 4.3: Building zones and their HVAC equipment.
Zone Usage ANFA in m2 AHU Cooling
1 Corridors, restrooms, small kitchens 6,908 partly no
2 Offices 2,252 no no
3 Offices 8,813 no yes
4 Offices 2,015 yes no
5 Central kitchen and canteen 1,129 yes no

Which parameters are considered to be uncertain depends on the project (e.g.,
available data and documentation). Also, control settings might be considered to
be uncertain even though they are usually known. They are explicitly considered in
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this SA application in order to identify energy-efficient control strategies.
Several occupant-dependent parameters and variables are selected to be analyzed

in the SA because, as mentioned in Chapter 3, they are known to be highly influential
on BPS results (e.g., Page et al., 2008; Brohus et al., 2009; Haldi and Robinson,
2011). As in the BPS case study in Section 3.2.5, the air change rates are defined
by a schedule and the value is varied by a sampled factor indicated by the box plots
(Figure 4.11). The factors are ACH nat (natural ventilation including infiltration)
for Zones 1, 2, 3 and 5, ACH inf (infiltration) for Zone 4 and ACH AHU (volume flow
rate through the AHU) for Zone 4. The efficiency of the heat exchanger of the AHU
(ηHX) in zone 5 is also considered to be uncertain.
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Figure 4.11: Schedules for the air change rates. The box plots indicate the varia-
tion of the schedule values in the MC simulation.

The room temperature set point (Tset), the irradiance threshold for shading control
(Ishad) and the operating schedule for the pumps of the heating circuits (daily pump
operation time ∆kpump) are also varied during the MC simulation and are applied
for all zones. Tset is considered to be uncertain because it is mainly set by the
occupants in the offices. The shading elements are controlled by the occupants and
the irradiance on the façade is assumed to be the trigger that leads to adjustments
by the occupants. This behavior is implemented via Ishad. The variance for the
parameters is smaller than for the case study in Chapter 3. This is because the
large number of occupants in the building is assumed to result in less variation (i.e.,
extreme behavior of single occupants does not dominate the overall effect). The
pump operation times (∆kpump) are usually set in the building automation system.
In the real building, the pumps were operated 24 hours per day and there was
no temperature setback for the supply temperature of the heating circuits during
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unoccupied hours. However, it is varied in the SA to analyze the influence of this
control strategy setting on the heating energy demand of the building. ∆kpump is
implemented as a schedule that is generated by an R script. This implementation
is the reason that the maximum value is 23.99 instead of 24. 12:00 is the basis
for the schedule generation. The pump operation starts at 12:00 − ∆kpump/2 and
ends at 12:00 + ∆kpump/2. Many more variables and parameters could be analyzed.
These seven simulation inputs were selected in order to implement each step of
the methodology with the same number of parameters, to allow comparability of
the results21. Brevity is another reason for this selection. The parameters for the
distributions which are used for the sampling can be found in Table 4.4.

Table 4.4: Parameters selected for variation and their distributions.
Parameter Distribution µ σ Unit

ACH nat (scaling factor) normal 1 0.05 –
ACH inf (scaling factor) normal 1 0.05 –

ACH AHU (scaling factor) normal 1 0.05 –
∆Tset (offset) normal 0 0.15 K

ηHX (efficiency heat recovery AHU) normal 0.6 0.05 –
Ishad (irradiance threshold for control) normal 200 20 W

m2

Parameter Distribution min. max. Unit
∆kpump (pump operation time) uniform 12 23.99 h

The simulated period is from September 1, 2008 to November 30, 2008 because
heating energy consumption is the main focus of the case study22. The model was
validated with the measured data from this period (Elci, 2010; Burhenne et al.,
2010a). The outdoor air temperature and irradiance were also taken from on-site
measurements.

21Some methods that are used in the SA methodology can only cope with a limited number of
inputs (e.g., the scatter plot and the VB method).

22This is not the full heating period. However, the selection of this period is based on the availability
of measurements.
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4.3 Results and Discussion

4.3.1 Scatter Plot Method

Scatter plots are used to obtain the first impression concerning model structure and
parameter significance. As in Chapter 3, convergence is analyzed with the mean
and variance estimates as convergence criteria. The heating energy (Qheat) of the
building from September 1, 2008 to November 30, 2008 is the primary model result in
this example. Figure 4.12 shows the convergence plot for the mean and the variance
estimates. The horizontal line represents the results for the highest sample size (i.e.,
1024). These results are used as the reference (i.e., 343.94 MWh for the mean and
227.43 MWh2 for the variance). As for the examples shown in Section 3.2.5, it is
assumed that convergence is reached when the values of the estimates are within the
range of the reference results ±5%. Table 4.5 shows the results and their deviation
from the reference values. The mean estimate converges already at a sample size of
2 (354.80 MWh; +3.2%)23 whereas the variance estimate converges at a sample size
of 128.

Figure 4.12: Convergence plot for the mean and variance estimates of the heating
energy demand (Note that the y-axes do not start at 0).

23Note that this result is not shown Table 4.5. Results coming from very low sample sizes are likely
to occur by chance.
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Table 4.5: Convergence of mean and variance estimates for the SA MC simulation.
Gray cells indicate estimates that have converged to the reference value
±5%.

Sample
size 32 64 128 256 512 1,024

Mean
estimate
in MWh

343.33
-0.2%

343.56
-0.1%

343.81
0.0%

343.88
0.0%

343.95
0.0%

343.94
0.0%

Variance
estimate
in MWh2

189.78
-16.6%

206.39
-9.2%

217.60
-4.3%

219.27
-3.6%

225.73
-0.7%

227.43
0.0%

Figure 4.13 shows scatter plots of the sampled parameters and Qheat for the ana-
lyzed period. The sample size of the underlying MC simulation for this plot is 128.
It is evident that the heat consumption of the building (Qheat) is very sensitive to
the natural ventilation (ACH nat) for Zones 1, 2, 3 and 5 as well as to the room tem-
perature set point (∆Tset). The red points indicate the mean value within each slice.
The distribution pattern of the points and the slope of an imaginary line through
the red points indicate that the higher ACHnat and ∆Tset are, the higher is Qheat.
∆Tset is very influential although the variation of the offset and hence the variation
of the set point temperatures is small. The scatter plot for the pump operating hours
(∆kpump) does not show such a clear pattern. However, the red points indicate that
Qheat increases as ∆kpump for the heating circuit pumps increases. Ishad has a minor
influence. A weak trend of the red points is visible, with higher values for Ishad
leading to a slightly smaller Qheat. The remaining parameters (ACH inf ,ACH AHU
and ηHX) do not show a strong influence on Qheat. This is most likely to be due to
the fact that all of them are only applied to one zone (i.e., zone 4). Furthermore,
they influence each other (e.g., the influence of a higher ACH AHU on Qheat can be
compensated by a lower ACH inf and/or a higher ηHX), resulting in a weaker influ-
ence of a single parameter. The scatter plots allow initial insights concerning the
driving model inputs. However, such a qualitative measure is sometimes hard to
interpret (e.g., the question What is more influential, ACH AHU or ACH inf ? would
be difficult to answer.). Hence, it is worthwhile to apply another sensitivity analy-
sis method to further examine the influence of the parameters and variables of the
model and possible interactions.
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Figure 4.13: Scatter plots of heating energy demand of the building versus the
analyzed parameters. The dashed vertical lines divide the scatter
plots into 8 slices with 16 dots in each slice. The red points represent
the mean value of Qheat(Xi) in each slice.
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The ranking of the inputs according to their sensitivity is shown in Table 4.6. It
is performed by calculating the variance of the mean values of Qheat(Xi) over all 8
slices and ordering the parameters according to it (decreasing order).

Table 4.6: Ranking of the parameters and variables according to their influence on
the BPS result based on the scatter plot method (N = 128).

Ranking Parameter
Variance of mean values
over slices in MWh2

1 ACH nat (scaling factor) 101.3
2 ∆Tset (offset) 75.9
3 ∆kpump (hours of pump operation) 56.5
4 Ishad (irradiance threshold for control) 8.2
5 ηHX (efficiency heat recovery AHU) 6.4
6 ACH AHU (scaling factor) 2.6
7 ACH inf (scaling factor) 1.8

4.3.2 Elementary Effects Method

Given the small number of analyzed parameters (k) in the case study, the next step
could be a variance-based SA. However, the EE method is applied for illustration
purposes. As mentioned earlier, r is commonly in the range of 2 to 8. However,
the number of blocks is increased successively to analyze the convergence of the
EE measures µ∗ and σ (Figure 4.14). The aim of the EE method is to identify
a subset of non-influential parameters and variables (i.e., factor-fixing application).
Hence, the relation of the values for µ∗ to each other is more important than their
absolute value. The method fails when an important parameter or variable remains
unrecognized. Table 4.7 reveals that ranking the parameters according to µ∗ would
result in the same order for any analyzed r. The reference results24 come from an
MC simulation with r = 512. The results show that the estimator for µ∗ converges
faster than the estimator for σ. However, µ∗ is the primary result of the EE method.
Table 4.8 contains the results for r = 8 that are further analyzed. In Figure 4.15 µ∗

and σ estimates are plotted against each other for r = 8. The figure reveals that there
are no significant interactions between the analyzed parameters or nonlinearities in
the model (i.e., no points above the line that satisfies the condition µ∗ = ±2 σi√

r
).

24Note that these results are not shown in the table.
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Figure 4.14: Convergence plot for the µ∗ and σ estimates.
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4.3 Results and Discussion

Table 4.7: Convergence of µ∗ and σ estimates. Gray cells indicate estimates that
have converged to the reference value ±5%. The red cells indicate that
the estimate falls within the target range but that convergence has not
been reached.

r 2 4 8 16 32 64
µ∗

ACH nat
2.87e+7
-21.1%

3.31e+7
-8.8%

3.18e+7
-12.5%

3.49e+7
-3.8%

3.37e+7
-7.3%

3.53e+7
-2.7%

∆Tset
2.86e+7
-9.4%

2.44e+7
-22.7%

2.71e+7
-14.2%

3.25+7
+2.8%

2.91e+7
-7.8%

2.98e+7
-5.7%

∆kpump
1.64e+7
-3.6%

1.57e+7
-7.8%

1.77e+7
+3.9%

1.73e+7
+1.5%

1.67e+7
-1.9%

1.64e+7
-3.9%

Ishad
6.38e+6
-4.3%

5.23e+6
-21.6%

5.71e+6
-14.4%

6.18e+6
-7.3%

6.11e+6
-8.3%

6.75e+6
+1.2%

ηHX
3.42e+6
-20.6%

3.89e+6
-9.7%

3.43e+6
-20.4%

4.54e+6
+5.3%

4.42e+6
+2.5%

4.47e+6
+3.8%

ACH inf
2.04e+6
-7.8%

1.90e+6
-14.0%

2.04e+6
-7.8%

1.83e+6
-17.2%

2.21e+6
-0.4%

2.17e+6
-2.0%

ACH AHU
1.41e+6
-16.7%

1.60e+6
-5.0%

1.38e+6
-18.0%

1.44e+6
-14.8%

1.55e+6
-8.2%

1.83e+6
+8.5%

σ

ACH nat
1.48e+6
-91.4%

4.83e+6
-71.9%

5.23e+6
-69.6%

1.26e+7
-27.0%

6.4e+6
-62.8%

1.17e+7
-32.3%

∆Tset
7.51e+6
-75.1%

2.71e+6
-91.0%

4.04e+6
-86.6%

1.24e+7
-58.9%

1.59e+07
-47.3%

1.15e+7
-62.0%

∆kpump
3.05e+6
-58.7%

4.66e+6
-36.9%

4.50e+6
-39.2%

4.04e+6
-45.4%

4.39e+6
-40.6%

6.38e+6
-13.7%

Ishad
2.49e+6
-42.3%

5.69e+5
-86.8%

8.66e+5
-80.0%

2.02e+6
+53.2%

2.03e+6
-53.1%

4.76e+6
+10.0%

ηHX
2.43e+5
-89.0%

6.43e+5
-70.8%

4.81e+5
-78.1%

1.88e+6
-14.6%

1.27e+6
-42.2%

3.23e+6
+46.8%

ACH inf
4.99e+5
-52.7%

2.97e+5
-71.9%

4.16e+5
-60.6%

1.96e+5
-81.4%

1.08e+6
+2.5%

8.59e+5
-18.5%

ACH AHU
1.90e+5
-76.7%

4.71e+5
-42.3%

2.06e+5
-74.7%

2.82e+5
-65.5%

4.45e+5
-45.5%

1.52e+6
+86.2%
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Table 4.8: Ranking of the parameters and variables according to their influence on
the BPS result based on the EE method (r = 8).

Ranking Parameter µ∗ σ

1 ACH nat (scaling factor) 3.18e+7 5.23e+6
2 ∆Tset (offset) 2.71e+7 4.04e+6
3 ∆kpump (hours of pump operation) 1.77e+7 4.50e+6
4 Ishad (irradiance threshold for control) 5.71e+6 8.66e+5
5 ηHX (efficiency heat recovery AHU) 3.43e+6 4.81e+5
6 ACH inf (scaling factor) 2.04e+6 4.16e+5
7 ACH AHU (scaling factor) 1.38e+6 2.06e+5

Figure 4.15: µ∗ and σ estimates plotted against each other (r = 8).

4.3.3 Variance-Based Method

The VB method can be applied for a selection (i.e., most influential parameters) of
initially analyzed parameters. Given the number of parameters in this example, it is
possible to analyze all parameters and variables with the VB method. The sample
size (N) of the underlying MC simulation is increased successively to analyze the
convergence (Figure 4.16 and Table 4.9). The reference results come from an MC
simulation with N = 8,192.
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4.3 Results and Discussion

Figure 4.16: Convergence plot for the first-order (Si) and total (STi) sensitivity
index estimates.

It is evident that the estimator for STi converges more quickly than the estimator
for Si. Especially the non-influential parameters (Si and STi ≤ 0.05 ∼= 5%) require
large sample sizes for convergence to be reached. This is due to the small influence
on the result. Even when the convergence criterion is not reached, the results provide
insights on the importance. In cases where the EE method is used for factor fixing
(FF), these parameters are not analyzed with the variance-based approach. Instead
of analyzing the convergence of all estimators, the convergence of only

∑
Si and∑

STi can be analyzed for simplicity reasons. The estimator for
∑
Si converges at

N = 1,024 and
∑
STi converges at N = 128.
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Table 4.9: Convergence of Si and STi estimates. Gray cells indicate estimates that
have converged to the reference value ±5%. The red cells indicate that
the estimate falls within the target range but that convergence has not
been reached.

N 64 128 256 512 1,024 2,048
Si

ACH nat
1.225

+169.8%
0.684

+50.7%
0.649

+42.9%
0.642

+41.4%
0.514

+13.2%
0.453
-0.2%

∆Tset
0.470

+44.2%
0.137
-57.9%

0.422
+29.7%

0.406
+24.6%

0.291
-10.6%

0.336
+3.2%

∆kpump
0.259

+23.8%
0.187
-10.4%

0.135
-35.4%

0.062
-70.4%

0.220
+5.2%

0.210
+0.5%

Ishad
0.077

+385.7%
0.079

+394.2%
0.021

+35.0%
0.027

+70.4%
0.022

+37.3%
0.018

+11.0%

ηHX
0.034

+429.4%
0.001
-88.1%

0.008
+26.6%

0.001
-81.5%

0.012
+87.6%

0.005
-25.9%

ACH inf
0.035

+2302.0%
0.003

+75.5%
0.003

+80.5%
0.003

+76.2%
0.003

+83.3%
0.003

+90.0%

ACH AHU
0.013

+1262.3%
0.012

+1083.4%
0.001
-14.1%

0.001
+36.5%

0.002
+110.0%

0.000
-54.1%∑

Si
2.112

+108.5%
1.102
+8.8%

1.239
+22.3%

1.142
+12.7%

1.063
+4.9%

1.025
+1.1%

STi

ACH nat
0.547

+22.6%
0.466
+4.6%

0.465
+4.3%

0.514
+15.2%

0.451
+1.3%

0.445
-0.2%

∆Tset
0.379

+17.8%
0.334
+3.8%

0.333
+3.7%

0.364
+13.2%

0.323
+0.5%

0.321
-0.1%

∆kpump
0.133
-37.2%

0.216
+2.2%

0.217
+2.8%

0.120
-43.0%

0.215
+1.7%

0.212
+0.3%

Ishad
0.017
+7.9%

0.016
+1.1%

0.016
+3.3%

0.017
+12.1%

0.016
+0.2%

0.016
-0.1%

ηHX
0.007

+12.2%
0.007
+4.7%

0.007
+6.1%

0.007
+12.6%

0.006
+0.5%

0.006
+0.2%

ACH inf
0.002

+20.7%
0.002
+0.6%

0.002
+1.2%

0.002
+14.8%

0.002
+1.0%

0.002
+0.2%

ACH AHU
0.001
+0.1%

0.001
+2.6%

0.001
+4.4%

0.001
+11.6%

0.001
-0.9%

0.001
-0.1%∑

STi
1.085
+8.1%

1.041
+3.8%

1.041
+3.8%

1.025
+2.2%

1.014
+1.1%

1.002
-0.1%
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Table 4.10 contains the reference results for N = 8,192. The total number of
simulations required is N(k+ 2) = 8,192 ∗ (7 + 2) = 73,728. The results reveal that
the model is primarily additive (i.e., no interactions between the parameters). Ap-
proximately 45% of the result variance can be explained by the variance of ACH nat.
Approx. 32% of the variance in the results can be explained by ∆Tset. The pump
operation hours cause approx. 21% of the result variance. All remaining parameters
have a negligible influence on the results. 1.6% can be attributed to Ishad and less
than 1% is caused by ACH inf , ACH AHU and ηHX.

Table 4.10: Results of the variance-based method (N = 8,192).
Ranking Parameter Si STi

1 ACH nat (scaling factor) 0.454 0.446
2 ∆Tset (offset) 0.326 0.321
3 ∆kpump (hours of pump operation) 0.209 0.211
4 Ishad (irradiance threshold for control) 0.016 0.016
5 ηHX (efficiency heat recovery AHU) 0.006 0.006
6 ACH inf (scaling factor) 0.001 0.002
7 ACH AHU (scaling factor) 0.001 0.001∑

1.013 1.003

4.3.4 Monte Carlo Filtering

MC filtering is performed on the basis of the MC simulation results that were used
for the VB method. For the separation into the behavioral and non-behavioral bins,
a threshold of 350 MWh for the heating energy (Qheat) is used. This number is arbi-
trarily chosen. In practice, it could be based on an agreement between the building
owner and a company that aims to improve the building’s energy efficiency (e.g., per-
formance contracting). The underlying MC sample size is 8,192 and the MC results
used for the VB method are used. The behavioral subset contains 5,319 results and
the non-behavioral subset contains 2,873 results. The larger the differences between
the ECDFs for the behavioral and non-behavioral result subsets, the greater is the
influence of the analyzed parameter in driving the simulation output into a specific
region. Figure 4.17 reveals that ACH nat has a significant influence on whether Qheat
is below or equal to 350 MWh or not. Other interesting pieces of information that
can be obtained by analyzing the ECDFs are the minimal and maximal values of
a variable in the subsets. The lowest value for ACH nat in the behavioral subset
is approx. 0.82 whereas the lowest scaling factor in the non-behavioral subset is
approx. 0.90. If minimal values of the behavioral and the non-behavioral subset
are significantly different, this indicates a very influential parameter. The same is
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true for the maximal values for both subsets. For the offset for the temperature set
point (∆Tset), the minimal values of both subsets are also different. For all other
analyzed parameters, the minimal and maximal values of the behavioral and the
non-behavioral subsets are approximately equal. The lower ∆Tset is, the higher is
the probability that Qheat is less than or equal to 350 MWh. The same is true for
∆kpump. The probability of ∆kpump being less than 18 h in the behavioral subset is
approx. 60%, whereas the probability for the same criterion in the non-behavioral
subset is approx. 30%. These probabilities indicate that shorter pump operating
duration contribute to the defined goal being reached (i.e., Qheat ≤ 350 MWh). The
ECDFs also reveal that the remaining parameters and variables are less influential
on Qheat. It can be seen that the ECDFs for the two subsets of ηHX and Ishad have
larger distances between each other than those for ACH inf and ACH AHU.
In addition to the visual inspection of the ECDFs, a Kolmogorov-Smirnov test is

conducted to compute the maximum distance between the behavioral and the non-
behavioral ECDFs. Table 4.11 shows the results of the Kolmogorov-Smirnov test.
The test confirms the findings based on visual inspection of Figure 4.17. Another
interesting result of the test is the p-value. In the analyzed case, the null hypothesis
is that the results for the behavioral and the non-behavioral subsets come from the
same distribution. If the p-value is below the chosen significance level, the null
hypothesis is rejected and the two different subsets do not come from the same
distribution. In this example, a significance level of 0.05 is chosen. The p-values for
ACH nat, ∆Tset, ∆kpump, Ishad and ηHX are below this threshold, which means that
the two distributions are significantly different and the analyzed simulation input
has significant influence on the result. The p-values for the remaining parameters are
above the threshold (i.e., the null hypothesis that both subsets come from the same
distribution cannot be rejected), which indicates that the ECDFs for the subsets are
not significantly different.

Table 4.11: Results of the Kolmogorov-Smirnov test (N = 8,192).
Ranking Parameter D p-value

1 ACH nat (scaling factor) 0.4651 < 2.2e-16
2 ∆Tset (offset) 0.4042 < 2.2e-16
3 ∆kpump (hours of pump operation) 0.3194 < 2.2e-16
4 Ishad (irradiance threshold for control) 0.1046 < 2.2e-16
5 ηHX (efficiency heat recovery AHU) 0.0573 9.599e-6
6 ACH inf (scaling factor) 0.0258 0.1669
7 ACH AHU (scaling factor) 0.0225 0.3025
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Figure 4.17: Monte Carlo filtering plot for the heating energy demand (N = 8,192).

4.3.5 Predicted Savings and Implementation

As mentioned in Section 4.2.6, the aim is to leverage the SA methodology to improve
building operation. Based on the SA results, the analyst can decide which changes
should be implemented in the real building. The SA showed that the pump operation
schedule (∆kpump) is the third most influential input. The most influential inputs
(ACH nat, ∆Tset) cannot be fixed to a certain value because they are dependent on
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occupants’ behavior. However, user feedback could inform the occupants and lead
to energy savings. The pump schedule can be changed in the building automation
system. The influence of ACH inf , ACH AHU and ηHX is small because they are
applied only to the simulation zone with the AHU equipped with heat recovery
unit.

To allow calculation of the potential energy savings, a new pump schedule is intro-
duced in the simulation. This schedule is based on the SA results and requirements
concerning the building’s occupancy. According to this schedule, the pumps are
operated from 6:00 till 20:00 on weekdays and from 6:00 till 16:00 on Saturdays.
All other parameters that were analyzed in the SA (i.e., ACH nat, ∆Tset, Ishad, ηHX,
ACH AHU and ACH inf) are considered to be uncertain. Two sets of MC simulations
were conducted, each for the period from December 1, 2008 till November 30, 2009.
In the first set, the pump is operated 24 hours per day and in the second set, the new
schedule is implemented. The values sampled for both simulations are the same25

and Figure 4.18 shows the PDFs of the results.

Figure 4.18: PDFs of Qheat for two operation strategies (N = 512). The red curve
is with 24 h/d pump operation and the blue one is with the new pump
schedule.

The potential savings are calculated according to Equation 4.22.

25This is important for the comparability of the two MC simulations.
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Figure 4.19 shows the probability density function for the potential energy saving.
The mean value of the potential energy saving is 55.6 MWh.

Figure 4.19: PDF and ECDF for the heating energy saving (N = 512).

Following the decision that the pump schedules should be changed, the process
of implementing it in the building automation system starts. Figure 4.20 shows a
carpet plot of the measured data before and after the change of operation. According
to the control signal, the pump ran constantly from October till December 2008
(Ctrlpump; 1 ). In December 2008, the pump schedule was implemented in the
building (Ctrlpump; 2 ). After that, the temperature difference (∆T ) between the
supply and the return pipe is high during the night (∆T ; 3 ). Furthermore, the
supply temperature is high (Tsup; 3 ). After further investigation, it turned out
that the 3-way valve of the heating circuit was in a partly open position during
the night. The main distribution pump pressed the hot water through this valve,
which led to a high supply temperature (approx. 90◦C). The valve was adjusted in
April 2009 (∆T and Tsup; 4 ). The measured heat consumption from December 1,
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2008 till November 30, 2009 is 1,191 MWh. The measured energy consumption is
less than the simulated demand, which is likely to be due to other optimizations of
the building operation. Furthermore, changed occupants’ behavior could also be a
reason.

Figure 4.20: Carpet plot of the measured data in the building. The time of each
day is shown on the y-axis from 0:00 to 24:00 and the days are plotted
next to each other along the x-axis. The measurement value itself is
represented by different colors according to its value.
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4.4 Summary
An SA methodology for BPS was proposed. The methodology is scalable depending
on project requirements and able to answer questions commonly raised in build-
ing design and operation as well as in BPS model development. The SA methods
were taken from literature and combined to define the proposed methodology. The
individual SA methods can be considered to be best practice. All methods were im-
plemented in R because a program that fulfilled the requirements (i.e., applicability
for BPS, ability to parallelize the MC simulation) did not previously exist.
The case study revealed that the ranking for ACH inf and ACH AHU that was

produced by the EE method, the VB method and MC filtering is different to that
obtained with the scatter plot method. The results coming from the VB method are
considered to be the reference. However, the ranking varied only for the parameters
that have minor influence. This minor influence was also detected by the scatter plot
method. The analyzed model is primarily additive (i.e., no interactions between the
analyzed parameters) which was revealed by the µ∗-σ plot and the similar results
for Si and STi.
The main findings are:

(I) SA provides insights into the model structure (e.g., additivity of the models).

(II) There is no single SA methodology that fulfills all potential requirements for
an SA with BPS models. Therefore different methods have been combined to
a scalable SA methodology. Recommendations concerning typical applications
have been given.

(III) The variance-based method provides most insights. It can be used for factor
prioritization (Si), factor fixing (STi) and variance cutting (STi). However, it is
computationally expensive. In combination with the other proposed methods,
this disadvantage can be overcome.

(IV) All investigated MC-based SA methods are well suited for parallelization and
the developed R tool chain is capable of distributing the simulations among
different processor cores.

(V) Similar to the UA, an SA provides valuable additional insights compared to a
classic BPS. UA and SA can be easily combined.

(VI) A methodology for applying SA (and UA) to improve building operation has
been developed and demonstrated.
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5 Application to Residential Building
Design

The different parts of the overall methodology have been introduced in Chapters 2,
3 and 4. Two case studies illustrated aspects of the proposed approach to UA and
SA. In this Chapter, all steps of the methodology will be applied to a single example.

5.1 Case Study

The analyzed building1 is a residential building and serves as an example. In the
standard configuration, the building fulfills the requirements of the German Energie-
einsparverordnung (EnEV) from 2009 that is mandatory for newly built buildings
(EnEV, 2009). In this example, this standard configuration is compared with a
design that meets the Passivhaus standard (Feist et al., 2007) with respect to the
energy performance and the cost-effectiveness. This information is commonly de-
manded in almost every design phase of a (residential) building. Figure 5.1 shows
the analyzed building and Table 5.1 contains an overview of selected building pa-
rameters. A gas boiler supplies the building with heat. For this case study, Freiburg
in Germany is assumed to be the location of the building.

Table 5.1: Building parameters.
Parameter Value Unit

A
V (envelope area to volume ratio) 0.72 m2

m3

Ve (gross volume) 675.7 m3

Awin (total window area) 35.9 m2

ANFA (net floor area) 216.2 m2

1The building has been designed and built several times in the area of Karlsruhe, Germany by
DOMA GmbH. The company provided all necessary data to perform this analysis. The cost data
are based on calculations of the company and are therefore case-specific. However, residential
buildings of similar size and type represent a large share of the building stock in Germany.
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North West

East South

Figure 5.1: Analyzed residential building.

In Table 5.2, the key requirements of both standards are compared for the building
analyzed in this case study.
The software PHPP (Passivhaus Projektierungspaket) is commonly used to design

and certify passive houses (Feist et al., 2007). In this thesis, the software is used to
model the standard configuration and the Passivhaus configuration. An R imple-
mentation of PHPP is used for the MC simulation2. This implementation has been
validated against the original PHPP by comparing the results for the standard con-
figuration and the Passivhaus configuration. The underlying calculations concerning
the energy demand of the buildings are based on a monthly method (Feist et al.,
2007). The advantage of the monthly method is that it produces reliable results for
the annual heating energy demand and is computationally cheap.
The central question of the presented case study concerns the consequences of

different building design options on building performance (i.e., the annual heating
energy demand per square meter floor area) and the corresponding cost-effectiveness
(i.e., the net present value).
In the combined building performance and cost-benefit analysis it is analyzed

whether and/or under what conditions the additional investment for improving the

2This implementation has been developed by the Fraunhofer Institute for Building Physics (IBP).
The R scripts are adapted in order to fulfill the MC simulation requirements.
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Table 5.2: Key requirements for the Energieeinsparverordnung from 2009 and the
Passivhaus standard. The requirements of the Passivhaus standard are
fixed requirements. The requirements of the Energieeinsparverordnung
are dependent on the investigated building and are based on the compli-
ance calculation for the Energieeinsparverordnung that was provided by
the company. The EnEV and the Passivhaus standard use different def-
initions of floor area. For the table the definition of the the Passivhaus
standard is used.

Criterion EnEV 2009 Passivhaus
standard Unit

Specific annual heating demand
(qheat)

– 15 kWh
m2a

Specific max. heating power
(q̇heat)

– 10 W
m2

Specific heat transfer coefficient
(H ′T)

0.40 – W
m2K

Max. infiltration at 50 Pa
(ACH 50)

3.0 0.6 1
h

Max. specific annual primary
energy demand (qprim)
without household
electricity demand

122 kWh
m2a

Max. specific annual primary
energy demand (qprim)
including household
electricity demand

120 kWh
m2a

standard configuration is cost-effective or not. Hence, the base case scenario is the
standard configuration. One model evaluation was conducted with all parameters
at the value for the standard configuration. The result coming from this model
evaluation (qheat,standard = 62.4 kWh/m2a) is used to compute the energy saving. The
approach described in Section 3.2.4 is used for the combined building performance
and cost-benefit analysis. The economic efficiency is assessed on the basis of the
necessary additional investment for the building that makes it better than the stan-
dard configuration (costs) and the savings based on the reduced energy consumption
compared to the standard configuration (benefits). The period under consideration
for the CBA is 25 years. This period has to be chosen depending on the expected
lifetime and other project boundary conditions. It is assumed that the performance
of the building and its energy demand is similar each year.
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5.1.1 Quantification of Building Performance Analysis Input
Uncertainty

5.1.1.1 Specification of the Building

In this case study, the building specification parameters are analyzed by means of
an MC simulation. The characteristics of the building components are continu-
ously varied between the values for the standard configuration and the values for
the Passivhaus configuration. The continuous variation allows for the analysis of
configurations that are intermediate between the standard configuration and the
Passivhaus configuration. The U-values for the outside walls, the ground floor, the
wooden ceiling, the roof, the windows, the outside door, the thermal bridge design,
the measures for improving the air tightness and the HVAC equipment are varied
in the MC simulation. The aim of this is to determine how the different building
characteristics influence the energy performance and whether the improvements are
cost-effective.
For the certification of passive houses, an air tightness test3 needs to be conducted

because the air tightness is a Passivhaus criterion (see Table 5.2). A ventilator is
used to generate a pressure difference between the inside and the outside of the
building of 50 Pa and the volume flow rate into the building is measured. The
test result is the air change per hour under these test conditions (ACH 50) and is
an indicator of the air tightness. However, this test represents the air tightness at
the moment the test is conducted and has measurement uncertainties. Over the
analyzed period, the air tightness might decrease (e.g., damaged foil).
A ventilation system with a heat recovery unit is known to be essential for passive

houses. The efficiency for the heat recovery unit (ηHX) is also continuously varied
from 0 (i.e., no heat recovery unit) to 0.92. Values of ηHX from 0 to 0.5 are not
common for heat recovery units used in residential buildings. However, in this ex-
ample it is assumed that parts of the building might be equipped with decentralized
air handling units with heat recovery systems. In cases where not all spaces are
equipped with these units, overall ηHX for the whole building can be in the range
from 0 to 0.92.
The parameters for the distributions which are used for the sampling can be

found in Table 5.3. Uniform distributions are used because all design specifications
are assumed to have an equal probability. In the table ∆UTB is a U-value correction
to account for thermal bridges. Uceiling is the U-value for the ceiling that separates
the living space and the attic.

3The air tightness test is often called Blower Door test after the company that invented the test.
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Table 5.3: Specification of the building components selected for variation and their
distributions.

Parameter Distribution min. max. Unit

Uwall uniform 0.115 0.203 W
m2K

Uroof uniform 0.084 0.203 W
m2K

Uceiling uniform 0.114 0.219 W
m2K

Ufloor uniform 0.144 0.427 W
m2K

Udoor uniform 0.690 1.000 W
m2K

Uwindow uniform 0.744 1.335 W
m2K

ACH 50 uniform 0.6 3.0 1
h

∆UTB uniform 0.01 0.05 W
m2K

ηHX uniform 0.00 0.92 –

5.1.1.2 Boundary Conditions

To account for different scenarios, the boundary conditions are varied in addition to
the specification of the building.
In the previous examples, the uncertainty in air change rates (ACH vent) had a

great influence on the results. Therefore, they are also considered as uncertain in
this case study. The variation is assumed to be similar to the case study of Chapter
3 because a residential building is analyzed in both case studies. The number of
occupants (occ) in the building is also varied. The number of occupants is directly
linked to the internal gains. Five occupants is the default value in PHPP for the floor
area of the building. This number is varied on the basis of a normal distribution with
a standard deviation of 1. In PHPP, the standard value for the room temperature
set point (Tset) is 20◦C. In this example, this parameter is assumed to be uniformly
distributed within the interval [20, 22]◦C because temperature set points in this range
can often be found in residential buildings. Table 5.4 documents the distributions
for the uncertain boundary conditions and their parameters.

5.1.2 Quantification of Cost-Benefit Analysis Input Uncertainty

In the CBA, qheat is an uncertain input coming from the BPA with the PHPP
implementation in R. qheat is the effective energy in the zone and is transformed to
final energy by a constant factor that comes from the EnEV compliance calculation.
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Table 5.4: Uncertain boundary conditions selected for variation and their
distributions.

Parameter Distribution µ σ Unit
ACH vent (scaling factor) normal 1 0.2 –

occ normal 5 1 –
Parameter Distribution min. max. Unit

Tset uniform 20 22 ◦C

In the following, the other CBA-related uncertainties are quantified.
The costs are implemented with cost functions that are based on data provided by

the company that builds the house. Separate cost functions for the outside wall, the
ground floor, the wooden ceiling, the roof, the windows, the outside door, the thermal
bridge design, the measures for improving the air tightness and the plant equipment
are used. The total cost for the additional investment is calculated with the cost
functions and is based on the sampled values for the building specification. Hence,
the cost functions are used to assign costs to the improved building characteristics.
The sum of the costs is varied by means of a scaling factor to account for cost-
related uncertainties. This scaling factor can be considered to be market-dependent
uncertainty (i.e., prices can vary depending on the business cycle of the building
industry). Furthermore, this variation captures cases where the specified design
(e.g., U-value) is not implemented. Figure 5.2 shows the cost functions. The cost
functions represent the cost differences compared to the standard configuration.
Specific costs (i.e., EUR/m2 component area) are used for Uroof , Uceiling, Ufloor and
Uwall. All other cost functions represent the total additional cost. The cost functions
for Uroof , Uceiling and Ufloor have a step when the U-value is better than the one for
the standard configuration. This step is implemented because of minimal insulation
thicknesses. The cost functions for Uroof , Uceiling, Ufloor and Uwall are based on
the additional insulation thickness required to achieve a lower U-value. The cost
functions based on the additional insulation thickness can be found in Appendix
A.3.
The additional investment cost is

IC =[c(Uwall)Awall + c(Uroof)Aroof + c(Uceiling)Aceiling + c(Ufloor)Afloor+
c(Udoor) + c(Uwindow) + c(ACH 50) + c(∆UTB) + c(ηHX)] IC scale

(5.1)

where c(U) are the cost functions, A represent the surface areas and IC scale is the
scaling factor for the investment cost. IC scale is assumed to be normally distributed
with µ = 1 and σ = 0.1, hence IC scale ∼ N(1, 0.1). Similarly to the case study pre-
sented in Section 3.2.5.2 and for the same reasons, running costs, periodic replace-
ment costs and maintenance costs are not considered in this example. Furthermore,
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5.1 Case Study

Figure 5.2: Cost functions dependent on the U-value of the building envelope ele-
ments and other building characteristics.

a potential investment cost reduction for the heating system due to the peak load
reduction is not considered. It is assumed that this cost reduction is marginal as the
peak power of a boiler in small residential buildings is usually determined by the
domestic hot water demand. Hence, a cost reduction would be solely due to smaller
radiators.
In this example, both UA and SA are considered to be equally important. UA
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provides an impression of the variation that can be expected given the input vari-
ations. SA is a tool to identify the important parameters that can be changed in
order to improve the design in a cost-effective way.
For the CBA, uncertain future boundary conditions are taken into account. It is

assumed that the gas price (GP), the inflation rate (Infl) and the interest rate (IR)
are uncertain. These uncertainties were quantified in Section 3.2.5.2 and are used
similarly for this example.

5.2 Results and Discussion

5.2.1 Building Performance Analysis

5.2.1.1 Uncertainty Analysis

In the UA, all parameters (k = 12) are varied as described above. Given the vari-
ation of design specification (e.g., U-values), this is likely to result in large output
uncertainties.
As in Chapters 3 and 4, convergence is analyzed with the mean and variance

estimates as convergence criteria. The annual heating energy per floor area (qheat)
is the primary model result for the building performance analysis (BPA). Figure 5.3
shows the convergence plot for the mean and the variance estimates. The horizontal
line represents the results for the largest sample size (i.e., 1,024). These results are
used as a reference (i.e., 40.7 kWh/(m2a) for the mean and 73.0 (kWh/(m2a))2 for the
variance). As for the previous examples the convergence criterion is the reference
result ±5%. Table 5.5 shows the results and their deviation from the reference
values. The mean estimate converges already at a sample size of 8 (40.8 kWh/(m2a);
+0.5%)4. The variance estimate converges at a sample size of 64.
Figure 5.4 shows the normalized histogram of the result vector together with a

PDF calculated with kernel density estimates and an ECDF for a sample size of 256.
This sample size is chosen to be larger than the sample sizes for convergence of the
mean and variance to obtain a reasonable histogram. The figure indicates how the
result varies given the uncertainties in the inputs. It is evident that the criterion
for reaching the Passivhaus standard is not reached in the MC simulation. This is
due to the fact that the probability of all parameters simultaneously being close to
their Passivhaus value is extremely small (i.e., high-dimensional parameter space).
This high dimensionality is the reason that no simulation run exists where all design
parameters are at their Passivhaus value. However, reaching the Passivhaus stan-
dard is not the main focus of this example, as the aim is to compare different design
options.

4Note that this result is not shown in Table 5.5.
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Figure 5.3: Convergence plot for the mean and variance estimates of qheat (Note
that the y-axes do not start at 0).

Table 5.5: Convergence of mean and variance estimates for qheat. Gray cells indi-
cate estimates that have converged to the reference value ±5%.

Sample
size 16 32 64 128 256 512 1,024

Mean
estimate

in
kWh/(m2a)

40.3
-0.9%

40.5
-0.3%

40.7
+0.2%

40.6
-0.1%

40.7
0.0%

40.6
0.0%

40.7
0.0%

Variance
estimate

in
(kWh/(m2a))2

90.3
+23.8%

86.0
+17.7%

73.3
+0.4%

72.9
-0.2%

72.5
-0.6%

73.0
+0.1%

73.0
0.0%

However, a design question might be:

• What is the probability to reach an annual heating energy demand per square
meter of ≤ 35 kWh/(m2a)?
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This heating energy demand approximately5 corresponds to the value that would
be required for a KfW-Effizienzhaus 55 design. Buildings that comply with this de-
sign are eligible for special loans and financial support in Germany (KfW, 2013). As
in the example presented in Chapter 3, the gray area under the PDF represents the
probability qheat ≤ 35 kWh/(m2a) and it is also indicated in the ECDF plot. Hence,
the answer of the design question is approximately 27% probability for reaching the
design goal.

Figure 5.4: PDF and ECDF for the annual heating energy demand per square
meter (N = 256).

Table 5.6 presents the statistical summary for the result. To illustrate the ad-
vantage of larger sample sizes, statistics are also computed for N = 1,024 and N =
8,192. This reveals that the minimum value and the maximum value changes when
the sample size is increased whereas the other statistics are comparable.
Figure 5.5 shows the PDF and CDF of the results from the MC simulation with

N = 8,192. It reveals that the histogram is smoother for large sample sizes. The
accuracy requirements are case-dependent and determine the required sample size.

5The criteria are the annual primary energy demand per square meter and the specific heat transfer
coefficient. For the analyzed building these criteria would be reached if qheat < 35 kWh/(m2a).
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Table 5.6: Statistical summary of the BPA result.

Statistic Value for
N=256

Value for
N=1,024

Value for
N=8,192

Mean 40.7 40.7 40.7
Variance 72.5 73.0 73.6

Standard deviation 8.52 8.54 8.58
Minimum 21.7 20.5 19.6

Lower (first) quartile 34.3 34.3 34.3
Median 40.2 40.1 40.2

Upper (third) quartile 45.9 46.3 46.6
Maximum 63.3 69.5 74.0

Figure 5.5: PDF and ECDF for the annual heating energy demand per square
meter (N = 8,192).

5.2.1.2 Sensitivity Analysis

The SA methodology is applied as described in Chapter 4.

Scatter Plot Method

Twelve input parameters are analyzed for the BPA. For the first impression, the
scatter plot method is employed for all of them. The underlying sample size is 256
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and the MC simulation results are the same as for the UA presented above. Figure
5.6 shows that the analyzed input parameters have a linear influence on the result
(i.e., the red points fall on straight lines). As expected, a higher efficiency of the
heat recovery unit leads to a lower heating energy demand and higher U-values
result in a higher heating energy demand. The uncertain boundary conditions have
a noticeable influence on the results. The higher Tset and ACH vent are, the higher is
qheat. By contrast, an increase in occ causes qheat to decrease, because the number
of occupants determines the internal gains.
The ranking of the inputs according to their sensitivity (i.e., variance of the mean

values of qheat(Xi) over all slices) is shown in Table 5.7. ηHX is the most influential
parameter in the analysis. The influence of Udoor is likely to be overestimated
because of a too small sample size6. Uceiling and Uroof have minor influence on the
result. This is likely to be due to the smaller proportion of the overall envelope area
compared to the other building components. Furthermore, the U-values of these
components are already relatively low in the standard configuration.

Table 5.7: Ranking of the parameters and variables according to their influence on
the BPA result based on the scatter plot method (N = 256).

Ranking Parameter
Variance of mean values
over slices in

(
kWh
m2a

)2

1 ηHX 50.98
2 Tset 7.70
3 Udoor 7.07
4 Uwall 6.18
5 ACH vent 4.72
6 ∆UTB 4.23
7 occ 2.07
8 Ufloor 2.05
9 Uwindow 2.00
10 ACH 50 1.19
11 Uceiling 0.84
12 Uroof 0.65

6This can be due to artifacts in the sample set (zig-zag-pattern in the red points). However, the
ranking will be compared with the ranking produced with the EE method.
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Figure 5.6: Scatter plots of the specific annual heating energy demand of the build-
ing versus the analyzed parameters. The dashed vertical lines divide
the scatter plots into eight slices with 32 dots in each slice. The red
points represent the mean value of qheat(Xi) in each slice.
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Elementary Effects Method

In order to reduce the number of investigated parameters, the EE method is applied
for screening. Table 5.8 contains the results for r = 8. Similar to the case study
in Chapter 4, the µ∗ and σ estimates are plotted against each other in Figure 5.7.
The figure reveals that most parameters do not have any significant interactions
or nonlinearities in the PHPP implementation (i.e., no points above the line that
indicates µ∗ = ±2 σi√

r
). However, σ for ACH vent and ηHX is relatively high, which

indicates the obvious interaction between these two parameters (i.e., a low ACH vent
reduces the influence of ηHX and vice versa). The six most influential parameters
and variables can be identified (i.e., ηHX, Tset, ACH vent, Uwall, ∆UTB and Ufloor).
As revealed by the scatter plot, ηHX has a dominant influence on the result. The
ranking obtained by the EE method is not similar to that determined by the scatter
plot method. As assumed before, the influence of Udoor is overestimated in the
ranking based on the scatter plot method. The required number of simulations for
the EE method is r(k + 1) = 8 ∗ (12 + 1) = 104.

Table 5.8: Ranking of the parameters and variables according to their influence on
the BPA result based on the EE method (r = 8).

Ranking Parameter µ∗ σ

1 ηHX 21.57 4.0220
2 Tset 9.43 1.1572
3 ACH vent 9.26 8.0555
4 Uwall 8.34 0.3090
5 ∆UTB 6.67 0.2362
6 Ufloor 5.07 0.4790
7 Uwindow 4.75 0.4177
8 occ 3.87 0.6865
9 ACH 50 3.63 2.1840
10 Uceiling 2.94 0.1166
11 Uroof 2.89 0.1118
12 Udoor 0.35 0.0139
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Figure 5.7: µ∗ and σ estimates plotted against each other (analyzed result: qheat;
r = 8).

Variance-Based Method

The VB method is applied for the six most influential parameters that were identified
from the initially analyzed parameters with the EE method. The non-influential
design parameters are fixed to the value for the standard configuration and the
boundary conditions are fixed to their expected value. The sample size (N) of
the underlying MC simulation is successively increased to analyze the convergence
(Figure 5.8 and Table 5.9). The reference results come from the MC simulation with
N = 2,048.
As in the case study in Chapter 4, the estimators for STi converge faster than

the estimators for Si. However, the estimators for
∑
Si and

∑
STi both converge

at N = 256. The total number of model evaluations required for N = 2,048 is
N(k + 2) = 2,048 ∗ (6 + 2) = 16,384. The results reveal that the model is non-
additive. However, only limited interactions between the parameters exist (i.e.,
1−

∑
Si is small).
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Figure 5.8: Convergence plot for the first-order (Si) and total (STi) sensitivity
index estimates for the BPA.
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Table 5.9: Convergence of Si and STi estimates for the BPA. Gray cells indicate
estimates that have converged to the reference value ±5%. The red
cells indicate that the estimate falls within the target range but that
convergence has not been reached.

N 64 128 256 512 1,024 2,048
Si

ηHX
0.902

+46.1%
0.636
+3.0%

0.556
-9.9%

0.578
-6.3%

0.624
+1.1%

0.617
0.0%

Tset
0.018
-87.2%

0.203
+41.0%

0.138
-4.4%

0.155
+7.4%

0.138
-4.4%

0.144
0.0%

Uwall
0.128

+49.1%
0.138

+60.5%
0.088
+2.6%

0.090
+4.7%

0.089
+2.9%

0.086
0.0%

∆UTB
0.066

+18.6%
0.039
-30.4%

0.053
-5.9%

0.054
-3.5%

0.054
-3.6%

0.056
0.0%

ACH vent
0.016
-56.0%

0.011
-68.8%

0.055
+56.4%

0.031
-13.6%

0.024
-32.8%

0.035
0.0%

Ufloor
0.038

+23.3%
0.020
-33.9%

0.034
+12.5%

0.035
+13.5%

0.032
+4.4%

0.031
0.0%∑

Si
1.168
20.5%

1.047
+8.1%

0.924
-4.6%

0.942
-2.8%

0.960
-0.9%

0.969
0.0%

STi

ηHX
0.637
-2.3%

0.618
-5.2%

0.663
+1.7%

0.651
0.0%

0.643
-1.3%

0.652
0.0%

Tset
0.140
-4.5%

0.146
-0.5%

0.146
-0.3%

0.147
-0.1%

0.146
-0.9%

0.147
0.0%

Uwall
0.082
-4.6%

0.086
+0.4%

0.084
-2.1%

0.087
+0.8%

0.086
+0.2%

0.086
0.0%

ACH vent
0.041
-33.4%

0.045
-26.8%

0.059
-3.2%

0.059
-3.4%

0.059
-2.8%

0.061
0.0%

∆UTB
0.054
-2.0%

0.053
-4.5%

0.054
-2.1%

0.055
+0.3%

0.055
+0.3%

0.055
0.0%

Ufloor
0.029
-9.9%

0.031
-2.5%

0.031
-2.0%

0.032
+0.9%

0.032
+0.3%

0.032
0.0%∑

STi
0.983
-4.8%

0.979
-5.2%

1.038
+0.5%

1.032
-0.1%

1.022
-1.1%

1.033
0.0%
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Table 5.10 presents the ranking obtained by the VB method. The interactions
between the investigated parameters lead to different rankings for Si and STi (only
the ranking of ∆UTB and ACH vent differs). Approximately 65% of the result variance
can be explained by the variance of ηHX and corresponding interactions with other
parameters.

Table 5.10: Ranking of the six most influential parameters and variables according
to their influence on qheat based on the VB method (N = 2,048).
Ranking Parameter Si Parameter STi

1 ηHX 0.617 ηHX 0.652
2 Tset 0.144 Tset 0.147
3 Uwall 0.086 Uwall 0.086
4 ∆UTB 0.056 ACH vent 0.061
5 ACH vent 0.035 ∆UTB 0.055
6 Ufloor 0.031 Ufloor 0.032∑

0.969
∑

1.033

Monte Carlo Filtering

For MCF, a threshold value has to be defined. As for the design question in the
UA, a value of 35 kWh/(m2a) is chosen as the threshold. The threshold has to be
determined such that a sufficient number of results fall in the behavioral subset and
the non-behavioral subset to guarantee the required statistical reliability. The un-
derlying MC sample size is 2,048 and the MC simulation results that were generated
for the VB method are used. The behavioral subset contains 88 results and the
non-behavioral subset contains 1,960 results. Figure 5.9 shows the MCF plot and
reveals that ηHX has a significant influence on whether qheat is less than or equal to
35 kWh/(m2a) or not. The lowest value for ηHX in the behavioral subset is approx.
0.5, which indicates that in the MC simulation, ηHX has to be higher than 0.5 to
reach a qheat ≤ 35 kWh/(m2a). For all other analyzed parameters, the minimal and
maximal values of the behavioral and the non-behavioral subsets are closer together.
As expected, it is visible that lower U-values lead to qheat ≤ 35 kWh/(m2a). This is
also true for low values for Tset.
Furthermore, a Kolmogorov-Smirnov test is conducted to compute the maximum

distance between the behavioral and the non-behavioral ECDFs. Table 5.11 shows
the results of the test and confirms the findings based on visual inspection of Figure
5.9. The p-values reveal that, given a significance level of 0.05, the null hypothesis
(i.e., the results for the behavioral and the non-behavioral subset come from the
same distribution) can be rejected for all parameters except ACH vent (i.e., all p-
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Figure 5.9: Monte Carlo filtering plot for the BPA (N = 2,048).

values are below this threshold, which means that two distributions are significantly
different and the analyzed simulation input has significant influence on the result).
The ranking produced with the Kolmogorov-Smirnov test is different to the ranking
based on the VB method. This can be due to the fact that the ranking is based on
the influence of the parameters on values for qheat ≤ 35 kWh/(m2a) and not on the
overall influence on qheat.
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Table 5.11: Results of the Kolmogorov-Smirnov test for the BPA (N = 2,048).
Ranking Parameter D p-value

1 ηHX 0.7342 < 2.2e-16
2 Uwall 0.4160 4.381e-13
3 Tset 0.4103 9.756e-13
4 ∆UTB 0.3811 4.737e-11
5 Ufloor 0.2448 8.262e-5
6 ACH vent 0.0770 0.7010

5.2.2 Combined Building Performance and Cost-Benefit Analysis

5.2.2.1 Uncertainty Analysis

For the combined building performance and cost-benefit analysis, 16 input parame-
ters and variables are investigated.
Convergence is analyzed with the mean and variance estimates as convergence

criteria. The net present value (NPV ) is the primary model result for the combined
BPA and CBA. Figure 5.10 shows the convergence plot for the mean and the variance
estimates. The horizontal line represents the results for the largest sample size (i.e.,
4,096). These results are used as the reference (i.e., -9,510 EUR for the mean and
1.830e+7 EUR2 for the variance). Again, the convergence criterion is the reference
result ±5%. Table 5.12 shows the results and their deviation from the reference
values. The mean estimate converges at a sample size of 8 (-9,308 EUR; -2.1%)7.
The variance estimate converges at a sample size of 1,024.

Table 5.12: Convergence of mean and variance estimates for NPV . Gray cells
indicate estimates that have converged to the reference value ±5%.
The red cell indicates that the estimate falls within the target range
but that convergence has not been reached.

Sample
size 64 128 256 512 1,024 2,048

Mean
estimate
in EUR

-9,504
-0.1%

-9,592
+0.9%

-9,544
+0.4%

-9,565
+0.6%

-9,521
+0.1%

-9,526
+0.2%

Variance
estimate
in EUR2

1.693e+7
-7.5%

1.769e+7
-3.3%

1.636e+7
-10.6%

1.687e+7
-7.8%

1.825e+7
-0.3%

1.803e+7
-1.5%

7Note that this result is not shown in Table 5.12.
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Figure 5.10: Convergence plot for the mean and variance estimates of the NPV
(Note that the y-axes do not start at 0).

In this example the design question is:

• What is the probability to reach a net present value of > 0 EUR?

A positive NPV indicates a profitable design compared to the standard design.
Figure 5.11 shows the normalized histogram of the result vector together with a

PDF calculated with kernel density estimates and an ECDF for a sample size of
1,024. The answer to the design question is (1− 0.9717) ≈ 3%.
Table 5.13 presents the statistical summary for the result for N = 1,024 and N =

8,192. As for the separate BPA, this reveals that the minimum and the maximum
values change when the sample size is increased whereas the other statistics remain
comparable.
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Figure 5.11: PDF and ECDF for the net present value (N = 1,024).

Table 5.13: Statistical summary for the combined BPA and CBA result.

Statistic Value for
N=1,024

Value for
N=8,192

Mean -9,509 -9,502
Variance 1.825e+7 1.828e+7

Standard deviation 4,272 4,276
Minimum -21,370 -23,540

Lower (first) quartile -12,320 -12,190
Median -9,755 -9,807

Upper (third) quartile -7,117 -7,261
Maximum 22,640 23,210

5.2.2.2 Sensitivity Analysis

Scatter Plot Method

Similar to the UA, 16 input parameters are investigated for the SA of the combined
BPA and CBA. Firstly, a scatter plot is used to gain a first impression of the ana-
lyzed parameters and their effects on the NPV . The underlying results are the same
as for the UA (N = 1,024). Figure 5.12 shows that most of the analyzed input pa-
rameters have a linear influence on the result (i.e., the red points fall approximately
on straight lines). However, some nonlinearities seem to exist (e.g., GPscale and IR).
In Figure 5.12, GPscale and Inflscale are represented by the sampled values obtained
by sampling from a uniform distribution in the interval [0,1]. These values were
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the basis for calculating the values for the gas price and the inflation rate which
are different in each year of the analyzed period (see Section 3.2.5.2 for details).
Hence, the numbers for GPscale and Inflscale shown in the figure can be interpreted
similarly to scaling factors (e.g., GPscale = 1 is a scenario with high gas prices and
GPscale = 0 is a scenario with low gas prices). As one would expect, the lower Tset
and ACH vent are, the higher is the NPV as these parameters decrease the heating
energy consumption without associated cost. For the design parameters, better (i.e.,
lower) U-values lead to a lower NPV . Hence, the associated cost for an improved
design does not seem to be cost-effective in the case study. It is also visible that
the uncertain economic boundary conditions (i.e., GPscale, IR and IC scale) have a
dominant influence on the NPV .
The ranking of the inputs according to their sensitivity (i.e., variance of the mean

values of NPV (Xi) over all slices) is shown in Table 5.14. It confirms the findings
of the visual inspection.

Table 5.14: Ranking of the parameters and variables according to their influence on
the combined BPA and CBA result based on the scatter plot method
(N = 1,024).

Ranking Parameter Variance of mean values
over slices in EUR2

1 GPscale 5,259,860
2 IR 4,527,628
3 IC scale 3,000,237
4 Tset 887,729
5 ACH vent 727,895
6 Ufloor 645,369
7 ηHX 543,800
8 Uwall 393,246
9 Inflscale 386,533
10 occ 217,264
11 Uwindow 138,721
12 Uceiling 117,350
13 ∆UTB 65,294
14 Uroof 47,380
15 ACH 50 27,143
16 Udoor 24,069
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Figure 5.12: Scatter plots of the net present value versus the analyzed parameters.
The dashed vertical lines divide the scatter plots into eight slices with
128 dots in each slice. The red points represent the mean value of the
NPV in each slice.
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Elementary Effects Method

As a second step, the EE method is applied for screening. Table 5.15 contains the
results for r = 8 and in Figure 5.13 the µ∗ and σ estimates are plotted against
each other. The table and the figure reveal that some parameters have interactions
or nonlinearities in the combined BPA and CBA (e.g., the influential parameters
GPscale, IR, IC scale, ηHX and ACH vent). However, no points fall above the line that
indicates µ∗ = ±2 σi√

r
. As revealed by the scatter plot GPscale, IR and IC scale have a

dominant influence on the result. Unlike the other economic boundary conditions,
the inflation rates have a lower influence. One reason for this is the periodic char-
acteristic of the inflation rate that leads to high and low values in the course of
the analyzed 25 years, meaning that the influence compensates itself. The ranking
obtained by the EE method is not similar to that from the scatter plot method.
However, the ranking produced by the EE method is considered to be more reliable
for the factor-fixing application. The required number of simulations for the EE
method is r(k + 1) = 8 ∗ (16 + 1) = 136.

Table 5.15: Ranking of the parameters and variables according to their influence
on the NPV based on the EE method (r = 8).

Ranking Parameter µ∗ σ

1 GPscale 6,951 3,787
2 IR 6,584 2,984
3 IC scale 5,915 2,074
4 ηHX 3,415 2,295
5 Tset 3,264 1,335
6 ACH vent 2,939 1,799
7 Uwall 2,447 1,219
8 Inflscale 1,483 519
9 Ufloor 1,340 994
10 occ 1,262 374
11 Uwindow 969 587
12 Uroof 939 593
13 ∆UTB 877 636
14 Uceiling 810 471
15 ACH 50 779 316
16 Udoor 340 308
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Figure 5.13: µ∗ and σ estimates plotted against each other (analyzed result: NPV ;
r = 8).

Variance-Based Method

The VB method is applied for the seven most influential parameters of the initially
analyzed parameters that were identified with the EE method. Seven parameters
were selected to include different types of parameters in the analysis. There are
three uncertain economic boundary conditions (i.e., GPscale, IR and IC scale), two
uncertain building analysis parameters (i.e., Tset and ACH vent) and two design pa-
rameters (i.e., ηHX and Uwall). The non-influential design parameters are fixed to
the value for the standard configuration and the non-influential boundary conditions
of the building analysis are fixed to their expected value. Furthermore, the ARIMA
prediction for Inflscale is assumed to be without uncertainties. The convergence of
the estimators is analyzed (Figure 5.14 and Table 5.16). The reference results come
from the MC simulation with N = 16,384. The total number of model evaluations
required for N = 16,384 is N(k + 2) = 16,384 ∗ (7 + 2) = 147,456. This number
is hard to afford for computationally expensive models. However, for this example,
one model evaluation takes less than one second and therefore this large sample size
was feasible. Compared to the previous examples, a larger sample size is required
for convergence. It is surmised that this is caused by the nonlinearities and the fact
that the model is non-additive.

150



5.2 Results and Discussion

Figure 5.14: Convergence plot for the first-order (Si) and total (STi) sensitivity
index estimates for the combined BPA and CBA.
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Table 5.16: Convergence of Si and STi estimates for the combined BPA and CBA.
Gray cells indicate estimates that have converged to the reference value
±5%. The red cells indicate that the estimate falls within the target
range but that convergence has not been reached.

N 256 512 1,024 2,048 4,096 8,192 16,384
Si

Tset
0.259

+13.4%
0.216
-5.4%

0.234
+2.2%

0.252
+10.1%

0.228
-0.3%

0.225
-1.8%

0.229
0.0%

GPscale
0.202

+65.1%
0.100
-18.0%

0.112
-8.9%

0.121
-1.0%

0.115
-6.2%

0.116
-5.1%

0.123
0.0%

IR 0.138
+43.8%

0.110
+14.7%

0.090
-5.9%

0.094
-2.4%

0.098
+2.3%

0.101
+4.9%

0.096
0.0%

IC scale
0.053
-35.4%

0.096
+16.9%

0.085
+3.5%

0.082
-0.2%

0.084
+1.7%

0.080
-2.6%

0.082
0.0%

ηHX
0.035
-49.2%

0.068
-2.5%

0.031
-55.4%

0.066
-5.5%

0.067
-4.1%

0.063
-9.4%

0.070
0.0%

Uwall
0.094

+45.1%
0.058
-10.3%

0.067
+2.8%

0.063
-2.8%

0.062
-4.4%

0.067
+3.4%

0.065
0.0%

ACH vent
0.047
+3.4%

0.050
+10.7%

0.039
-14.6%

0.033
-26.5%

0.039
-14.5%

0.045
+0.4%

0.045
0.0%∑

Si
0.829

+16.9%
0.699
-1.4%

0.657
-7.3%

0.711
-0.2%

0.692
-2.4%

0.697
-1.7%

0.709
0.0%

STi

Tset
0.294
+7.4%

0.269
-1.6%

0.279
+2.1%

0.282
+3.0%

0.280
+2.2%

0.270
-1.4%

0.273
0.0%

ηHX
0.232
-14.7%

0.286
+5.2%

0.275
+1.3%

0.276
+1.5%

0.268
-1.5%

0.268
-1.2%

0.272
0.0%

GPscale
0.300

+10.7%
0.286
+5.4%

0.266
-1.8%

0.256
-5.8%

0.271
-0.2%

0.265
-2.5%

0.271
0.0%

IR 0.221
+0.9%

0.219
-0.2%

0.207
-5.4%

0.222
+1.3%

0.228
+3.9%

0.215
-1.8%

0.219
0.0%

IC scale
0.104
+5.8%

0.100
+1.4%

0.098
-0.3%

0.099
+0.5%

0.100
+1.3%

0.099
0.0%

0.099
0.0%

ACH vent
0.096
+3.1%

0.082
-12.7%

0.099
+5.3%

0.098
+4.3%

0.095
+1.9%

0.095
+2.0%

0.094
0.0%

Uwall
0.090
+0.5%

0.090
+0.2%

0.092
+2.7%

0.090
+0.8%

0.091
+1.4%

0.089
-0.2%

0.090
0.0%∑

STi
1.338
+1.6%

1.331
+1.0%

1.317
0.0%

1.322
+0.4%

1.332
+1.1%

1.301
-1.2%

1.317
0.0%
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Table 5.17 presents the ranking obtained by the VB method. The interactions be-
tween the investigated parameters lead to different rankings for Si and STi. GPscale,
IR and ηHX have the most interactions with other parameters. 1−

∑
Si = 1−0.709 =

0.291 indicates the detected interactions.

Table 5.17: Ranking of the seven most influential parameters and variables ac-
cording to their influence on the NPV based on the VB method (N =
16,384).
Ranking Parameter Si Parameter STi

1 Tset 0.229 Tset 0.273
2 GPscale 0.123 ηHX 0.272
3 IR 0.096 GPscale 0.271
4 IC scale 0.082 IR 0.219
5 ηHX 0.070 IC scale 0.099
6 Uwall 0.065 ACH vent 0.094
7 ACH vent 0.045 Uwall 0.090∑

0.709
∑

1.317

Monte Carlo Filtering

For the separation into the behavioral and the non-behavioral bins, the threshold
value for the NPV is defined to be 0 EUR, as a NPV ≥ 0 EUR indicates a cost-
effective design. The underlying MC sample size is N = 16,384 and the results
produced for the VB method are used. The behavioral subset contains 663 results
and the non-behavioral subset contains 15,721 results. Figure 5.15 shows the MCF
plot and reveals that Tset, IR and GPscale have the greatest influence on whether
NPV is greater than or equal to 0 EUR.
By investigating the figure, it becomes obvious that the design parameters (i.e.,

Uwall and ηHX) do not influence the NPV significantly, whereas the economic bound-
ary conditions have a great influence. Tset is also influential. The findings are: low
interest rates (IR) lead to a positive NPV and for high gas prices (GPscale), a posi-
tive NPV is more likely. Both the interest rate and the gas price are very influential
parameters in the analysis. The probability of an interest rate below 6% in the
behavioral subset is higher than 90%, whereas the same probability in the non-
behavioral subset is approx. 50%. In the case of the gas price, it is unlikely that a
value for GPscale < 0.2 leads to a positive NPV . The investment costs have a visible
influence on the NPV even though the influence is less than that for the gas price or
the interest rates. As expected, it is evident that low values for Tset and ACH vent
lead to a positive NPV . Although ηHX has little influence on a positive NPV , it
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can be seen that an increased heat exchanger efficiency increases the probability for
a cost-effective design.

Figure 5.15: Monte Carlo filtering plot for the combined BPA and CBA (N =
16,384).
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Furthermore, a Kolmogorov-Smirnov test is conducted to compute the maximum
distance between the behavioral and the non-behavioral ECDFs. Table 5.18 shows
the results of the test and confirms the findings based on the visual inspection of
Figure 5.15. The p-values reveal that, given a significance level of 0.05, the null
hypothesis (i.e., the results for the behavioral and the non-behavioral subset come
from the same distribution) can be rejected for all parameters (i.e., all p-values
are below this threshold, which means that the two distributions are significantly
different and the analyzed simulation input has a significant influence on the result)
except Uwall. Also for this example, the ranking produced with the Kolmogorov-
Smirnov test is different to the ranking based on the VB method. This is due to
the fact that the ranking is based on the influence of the parameters on leading to
values for NPV ≥ 0 EUR and not on the overall influence on the NPV .

Table 5.18: Results of the Kolmogorov-Smirnov test for the combined BPA and
CBA (N = 16,384).

Ranking Parameter D p-value
1 GPscale 0.5560 < 2.2e-16
2 IR 0.4909 < 2.2e-16
3 Tset 0.4634 < 2.2e-16
4 ACH vent 0.2028 1.016e-6
5 IC scale 0.1757 < 2.2e-16
6 ηHX 0.1067 1.016e-6
7 Uwall 0.0508 0.07474

5.3 Summary

The methodology to conduct UA and SA for a building performance analysis and a
combined building performance analysis and cost-benefit analysis was illustrated.

5.3.1 Building Performance Analysis

Given the varied design parameters and the assumed uncertainties in the boundary
conditions for the BPA, the specific annual heating energy demand varies from 19.6
to 74.0 kWh/(m2a). Only approximately 28% of the model evaluations led to qheat ≤
35 kWh/(m2a).
The SA methodology was applied to analyze twelve parameters. The scatter

plot provided a visual impression of the model structure and the influence of the
investigated model inputs. This instrument could also be used for model validation
(i.e., Do all model parameters have the expected influence on the result?). It was
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also revealed that the ranking of the parameters included some unexpected results
(i.e., strong influence of Udoor even though the door represents a minor fraction of
the overall envelope area).
The EE method was used for factor fixing and to gain a first impression of inter-

actions between parameters or nonlinearities. On this basis, ACH vent and ηHX were
identified to interact. This is in accordance with prior knowledge based on the model.
For these two steps of the methodology, 256 + 104 = 360 model evaluations would
have been required if the model evaluations that were conducted for illustration rea-
sons were not taken into account. Given modern computers and parallelization, this
is affordable for most BPS models.
The six most influential parameters were further analyzed using the VB method.

This revealed that the model is non-additive. However, only limited interactions
between the parameters exist. Beside a reliable ranking according to the influence
of the parameters on the result variance for factor prioritization and factor fixing, the
VB method allows variance cutting. This is valuable if the aim is to reduce the result
variance. Furthermore, it is possible to determine the sources of the variance (e.g.,
Which fraction of the variance can be attributed to the uncertain boundary conditions
and which fraction can be attributed to the variation of the design parameters?). This
allows a combined analysis without losing the power of analyzing separate effects.
In practice, a common question is: Which design leads to energy efficiency or

compliance with a certain standard (e.g., LEED or the Passivhaus standard)? This
application was illustrated with MCF. The question was: Which parameter values
lead to qheat ≤ 35 kWh/(m2 a)? It was revealed that an air handling unit with
heat recovery is essential to reach the design goal. Furthermore, low U-values are
important for a low energy demand, at which for the analyzed building, Uwall and
∆UTB are more important than Ufloor.

5.3.2 Combined Building Performance and Cost-Benefit Analysis

A UA was conducted for the combined BPA and CBA. Three different types of
parameters were investigated: uncertain economic boundary conditions, uncertain
building analysis boundary conditions and design parameters. The NPV varies be-
tween -23,540 and +23,210 EUR. It was revealed that given the uncertain boundary
conditions, a cost-effective design has only 3% probability when the building speci-
fication is improved toward a Passivhaus design. This would indicate that given the
uncertainties and the economic boundary conditions in this case8, an energy-efficient
design is not likely to be cost-effective. 3% probability will not be satisfactory in
cases where the decisions are made purely on the basis of monetary values rather
than for environmental reasons. This case study provides a good example of how

8Note that these statements are case-specific. However, similarities to many other newly built
residential buildings exist.
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UA and SA supplement each other because it demonstrates the analysis of why
energy-efficient design is not cost-effective and how this situation can be improved.
For the SA of the combined BPA and CBA, all 16 parameters were analyzed.

The scatter plot revealed that three uncertain economic boundary conditions have a
strong influence on the result (i.e., GPscale, IR and IC scale). Furthermore, the user
behavior can improve the cost-effectiveness (i.e., Tset, ACH vent and occ). For the
design parameters, the mean values in the slices (represented by the red points) re-
veal that the NPV decreases when the design specification becomes more advanced.
This is due to the cost associated with improved design.
As for the separate BPA, the EE method was used for factor fixing and to gain a

first impression on interactions between parameters or nonlinearities. It was revealed
that in this case, the model contains more interactions and/or nonlinearities than the
separate BPA. For these two steps of the methodology, 1,024 + 136 = 1,160 model
evaluations would have been required if the model evaluations that were conducted
for illustration reasons and for the convergence analysis were not taken into account.
For this example, the seven most influential parameters were further analyzed

using the VB method. This revealed that the model is non-additive. The method
provides a reliable ranking according to the influence of the parameters on the result
variance for factor prioritization (Si) and factor fixing (STi) as well as information
on variance cutting (STi). Furthermore, it is possible to determine the sources of
the variance (e.g., Which fraction of the variance can be attributed to the uncertain
boundary conditions for the BPA and the CBA and which fraction can be attributed
to the variation of the design parameters?). The non-additivity leads to the fact that
the ranking is different for the first-order sensitivity indices (Si) and the total sensi-
tivity indices (STi). This example revealed that a convergence analysis is important
as the required sample size required for convergence is not known a priori. 147,456
model evaluations were required for this analysis. This requires computationally
cheap models and/or powerful computers.
MCF was used to further analyze the MC simulation results. In the example, it

was revealed that the design parameters have much less influence on a positive NPV
than the economic parameters and the occupant behavior (i.e., Tset). The future
gas price (GPscale), the expected interest rate (IR) and the room temperature set
point (Tset) are the most influential parameters. Also a significant reduction of the
investment cost (IC scale) can lead to positive NPV s. However, compared to the
other economic parameters, the investment cost is less influential than expected.
This is due to the compound interest effect of the other parameters (gas price and
interest rate). This information could lead to the conclusion that policy makers who
want to promote energy-efficient buildings should provide low-interest loans instead
of subsidies for the systems. The results also reveal that energy-efficient design is
most effectively promoted by high prices for conventional energy sources.
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6 Conclusions

6.1 Summary of Most Important Results
A review of the literature revealed that a holistic methodology and a toolchain for
uncertainty and sensitivity analysis as outlined in this thesis did not exist. Hence,
different methods were combined to define an overall methodology and a toolchain
was developed.
The statistical foundations required for Monte Carlo based uncertainty and sensi-

tivity analysis were introduced. Besides measures of location (e.g., arithmetic mean)
and measures of spread (i.e., variance and standard deviation), quantiles to separate
data into different subsets and the minimal and maximal values were identified as
the most important descriptive statistics. Different distributions were introduced
and advice was given on how they can be applied in a building performance simu-
lation context. When the case studies were analyzed, quantifying the input uncer-
tainty proved to be an important and difficult step within the analysis. The input
uncertainty quantification influences the results of a subsequent uncertainty and
sensitivity analysis. It is important to communicate and explain the assumptions
to the decision makers involved in the analysis. Once the toolchain for uncertainty
and sensitivity analysis as developed in this thesis is set up, an update of the input
uncertainty quantification assumptions is straightforward and only requires more
simulations for alternative results.
It was demonstrated that the chosen Monte Carlo based approach is applicable to

different building performance simulation programs and models and that the com-
putations can be parallelized. Different sampling techniques were analyzed with
respect to their convergence speed and robustness. Sampling based on Sobol′ se-
quences was identified to be the best sampling technique. This technique belongs
to the family of quasi-random techniques that are rarely applied in the building
performance simulation context1. The detailed comparison of sampling based on
Sobol′ sequences with other sampling techniques (i.e., random sampling, stratified
sampling and Latin hypercube sampling) was novel in building performance simu-
lation related research. It was revealed that the application of sampling based on
Sobol′ sequences reduces the required sample size and hence the number of necessary
simulations, which improves the applicability of Monte Carlo techniques in practice.

1An exception is the recent research of Eisenhower et al. that was conducted in parallel to this
thesis (e.g., Eisenhower et al. (2011, 2012a,b)).
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The sample size for which a Monte Carlo simulation converges cannot be deter-
mined a priori so an empirical convergence test should be part of every Monte Carlo
analysis. Therefore, guidelines on how to test for convergence were given. For most
building performance simulation problems, convergence can be defined to be reached
when the estimator falls within the range of the reference results ±5%. A practica-
ble Monte Carlo termination rule is when the estimator is within this range for the
last three sample sizes where the largest sample size is used as the reference result.
For this termination rule, the evaluated sample size is increased with N = 2j where
j ∈ N+. The practice of empirical convergence testing is based on the results of the
case studies and contradicts the statements of Lomas and Eppel (1992) and Mac-
donald (2002), who state that Monte Carlo simulations usually converge at sample
sizes of 60-80. In this thesis, it was shown that the model structure and the type
of the estimator determines the required sample size. Visualization techniques were
identified to be important to analyze Monte Carlo simulation results. Histograms,
probability density functions and empirical cumulative distribution functions were
used for a comprehensive analysis of stochastic output. A box plot, and a contour
plot that indicates the probability density of time series data, were employed for
analyzing stochastic time series output.
Three case studies were presented to illustrate different aspects of the methodology

and its application. In the case study that investigated a residential building with
a solar thermal collector (Section 3.2.5), the Monte Carlo simulation with sampling
based on Sobol′ sequences converged at a sample size of 128 for the variance estimate.
Random sampling required a sample size of 1,024 until convergence. Hence, in this
example, sampling based on Sobol′ sequences allows a reduction of the computational
cost of 87.5%.
Four methods for global sensitivity analysis that were identified as particularly

useful in the context of building performance simulation were combined to a scal-
able methodology. This methodology covers all of the different sensitivity analysis
applications (i.e., factor prioritization, factor fixing, variance cutting and factor map-
ping). The selected SA methods can be considered to be best practice and are based
on recent research. The scatter plot method is used for a first visual inspection
and ranking of the analyzed parameters. If many parameters are analyzed, the ele-
mentary effects method is used for identifying the most influential ones for further
investigation (i.e., factor fixing). Furthermore, the µ∗-σ plot provides insights into
the model structure (i.e., nonlinearities and interactions between parameters can be
identified). As a subsequent step, the variance-based method is applied for detailed
quantitative analysis with the computation of first-order and total sensitivity indices
for the set of the most influential parameters. Finally, Monte Carlo filtering can be
applied to determine the regions of the model inputs (e.g., design specifications and
boundary conditions) that lead to the desired model output (e.g., an energy demand
below a certain threshold).
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The sensitivity analysis methodology was illustrated for implementing operational
improvements of a large non-residential building and for the case study dealing
with typical residential building design. For the application to residential building
design (Chapter 5), sensitivity analysis was used to identify the most influential
parameters. The efficiency of the heat recovery unit in the air handling unit was
identified to be essential for the energy performance of the residential building (i.e.,
65% of the variance in the results could be attributed to the variation of the efficiency
and its interactions with the other parameters). The combination of all analyzed
sensitivity analysis methods to a general methodology was novel to building research.
Furthermore, Monte Carlo filtering was applied in a building performance simulation
context for the first time, to the author’s knowledge.
Furthermore, an approach for combining building performance simulation and

cost-benefit analysis was proposed. With this approach, it is possible to perform an
uncertainty analysis and a sensitivity analysis for this combination. This allows a
direct comparison of the influence of the economic input (e.g., energy prices, interest
rates) with building performance simulation input (e.g., insulation thickness, system
efficiency). With this combination, it is possible to assess the cost-effectiveness of
design options under consideration of uncertainties (decision support instrument).
The proposed analysis can supplement the typical design process and offers insights
into important aspects of the design and the role of the economic boundary condi-
tions. The holistic approach to uncertainty analysis and sensitivity analysis for a
combined building performance simulation and cost-benefit analysis was novel.
A combined building performance analysis and cost-benefit analysis was conducted

for two case studies. The case studies revealed large variations of the net present
value given the considered uncertainties. For the case study presented in Chapter
5, a sensitivity analysis was performed according to the proposed overall methodol-
ogy. It revealed quantitatively that the design parameters had less influence on the
cost-effectiveness than the economic parameters and the uncertainties introduced by
occupant behavior.
Given the large variance of the results in the case studies, uncertainty analysis

increased the transparency and helped to prevent a false sense of accuracy and
engineering rigor. Hence, taking uncertainties into account can lead to robust design
solutions or help to develop robust control strategies. Sensitivity analysis provided
insights on the driving model parameters and variables. Furthermore, an analysis of
the model structure was possible (e.g., analyzing linearity and additivity). However,
the benefits come at the cost that the analysis may take longer than a classic building
performance simulation and the computational cost increases. The methodology and
the developed toolchain aims to reduce the additional effort. Furthermore, the links
between uncertainty analysis and sensitivity analysis were illustrated. This holistic
approach was introduced to building performance simulation within the framework
of the research conducted for this thesis.
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The investigated case studies are diverse and aim to illustrate different appli-
cations. They guide practitioners who want to apply the proposed uncertainty
and sensitivity analysis methodology. R scripts for all steps of the methodology
were developed (e.g., generating samples, performing statistical computations and
arithmetic calculations, managing parallel simulations on different processor cores,
processing simulation input and output and result visualization). Especially the
parallelization improves the applicability and makes the full performance of mod-
ern multi-core processors accessible. This toolchain is now available for different
operating systems (e.g., Windows, Linux, Mac OS X) and for different (building
performance) simulation programs (e.g., Dymola, IDA ICE, ESP-r).

6.2 Guidelines for Applying the Developed
Methodology

The application of the methodology can range from building design or operation
to model development. The individual application defines the requirements. An
important question is whether the main focus is uncertainty analysis or sensitivity
analysis or both.
Figure 6.1 is a flow chart for conducting uncertainty analysis and sensitivity anal-

ysis for building performance simulation. The start of a sensitivity analysis is the
definition of the outcome and the requirements for the analysis. This can be based
on an agreement between the modeler and the client. The input uncertainty quan-
tification is part of every analysis. In Section 2.2.4, a flow chart for this step was
presented. If only an uncertainty analysis is the focus, the reader is referred to
Chapter 3 and the case study within this chapter (Section 3.2.5). For guidelines on
sensitivity analysis, more information can be found in Chapter 4 (a flow chart for
sensitivity analysis in Section 4.2.5 and the case study in Section 4.2.6). For details
on a combined uncertainty and sensitivity analysis, the reader is referred to Chapter
5. Depending on individual requirements, modifications of the methodology might
be necessary.
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Definition of
requirements

Modeler
and client

Input UQ

UA, SA or
combined
UA and SA

SAUA Combined UA SA

Requirements
fulfilled?

Requirements
fulfilled?

Requirements
fulfilled?

End of analysis

SA

UA
UA and SA

yesyes yes

no
nono

Figure 6.1: Flow chart for the overall uncertainty analysis and sensitivity analy-
sis methodology (UQ = uncertainty quantification, UA = uncertainty
analysis, SA = sensitivity analysis).
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6.3 Potential of the Results and Expected Impact

The importance of uncertainty analysis and sensitivity analysis was also identified
by the initiators of an Annex of the International Energy Agency, under the im-
plementing agreement on Energy Conservation in Buildings and Community Sys-
tems (ECBCS). Annex 55 has the title, "Reliability of Energy Efficient Building
Retrofitting - Probability Assessment of Performance & Cost (RAP-RETRO)". The
author was invited to two Annex meetings to present some results of this thesis.
This generated significant interest and a fruitful exchange of ideas.
Within the building performance simulation community, the interest in uncer-

tainty and sensitivity analysis has increased in recent years. The outcome of this
were special sessions on this topic at conferences organized by the International
Building Performance Simulation Association (IBPSA). The author presented some
of the results of this thesis at these conferences (e.g., Burhenne et al. (2010b, 2011)).
Several colleagues from the Fraunhofer Institute for Solar Energy Systems that

were not involved in this work became interested to apply the proposed methodology
for their ongoing projects. One example for this application was an analysis of
thermo-active building systems (TABS). Uncertainty and sensitivity analyses were
performed for a typical room equipped with TABS. It was analyzed how uncertainties
influence the heating and cooling energy demand of the TABS system as well as the
thermal comfort for the winter and summer case. This application demonstrated the
applicability of the methodology and provided valuable results for research projects.
The sensitivity analysis methodology for the combined building performance and

cost-benefit analysis can potentially be applied for supporting policy makers in pro-
moting renewable and/or energy-efficient energy systems (i.e., Which measures are
most effective to improve energy efficiency at acceptable cost? or Which political
boundary conditions promote renewable energy systems?).

6.4 Outlook and Future Work

The quantification of input uncertainties proved to be a time-consuming and dif-
ficult part of the analysis. If uncertainty analysis and sensitivity analysis became
common practice in building performance simulation, experience on the uncertainty
quantification for different cases and requirements could be shared among researchers
and practitioners. This is an iterative process, as uncertainty and sensitivity analy-
ses commonly identify those parameters that have a great influence on the results.
These parameters and variables have to be analyzed with special care, as correct
uncertainty quantification is essential for influential model input. A database of
typical cases and corresponding uncertainties could be established. Activities like
the ECBCS Annex 55 mentioned above initiate exchange between researchers and
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practitioners. This exchange is required for establishing a database on uncertainties
that are common for building performance simulation input and advancing uncer-
tainty and sensitivity analysis methods for building performance simulation.
Potentially, the methodology can be applied for more purposes than those illus-

trated in this thesis. This includes model development (e.g., analysis of parameter
importance for model reduction, insights on model behavior under changing condi-
tions, stress testing of new models and programs, generation of surrogate data with
a white-box model to construct a black-box model), optimization (e.g., optimization
in the face of uncertainty, identifying the influential parameters that are varied by
the optimization algorithm) and in the development of methods for fault detection
of HVAC systems (e.g., identification of fault-free scenarios taking uncertainties into
account). Especially optimization in the face of uncertainty is a promising research
topic. Jacob (2012), Hu and Augenbroe (2012) and Tanner and Henze (2013) aim
to find control strategies for HVAC systems that take uncertainties into account.
The methodology developed in this thesis is flexible and can be applied to all the
mentioned cases and beyond. However, adaptations and changes might be neces-
sary in order to fulfill certain requirements. Hence, an iterative application and
improvement could advance the developed methodology.
The uncertainty and sensitivity analysis toolchain is based on various R scripts

and interfaces between R and simulation programs (e.g., Dymola). The application
requires knowledge of the R syntax and application. Adaptations in models and
scripts (e.g., placing tokens in the simulation input text files, changing the inves-
tigated results and their post-processing) are prone to error. In the context of a
single PhD thesis, improving the user friendliness beyond its current state is hardly
possible. Furthermore, the transformation from a research tool into a user-friendly
program with a graphical user interface is an iterative and time-consuming task.
However, the R scripts proved to be reliable and can be used as a basis for fu-
ture developments. Only the user front end and the interfaces to different building
performance simulation programs have to be developed and improved.
The cost-benefit analysis aspects and the ARIMA predictions of future time series

data were implemented from the viewpoint of a building performance simulation
analyst. People working in the field of econometrics might be able to improve the
details of the analysis.
As the reader may have observed, the application of uncertainty and sensitiv-

ity analysis to building performance simulation requires a basic understanding of
statistical fundamentals. This is beyond the scope of many practitioners and the
additional effort has to be justified by benefits of the analysis. This thesis aimed
to illustrate the fundamentals and practical applications. However, it might take a
while until uncertainty and sensitivity analysis is commonly part of building perfor-
mance simulation in practice.
Potentially, the methodology can be applied for building performance simulation
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6 Conclusions

applications that have not yet been mentioned. It is now up to other modelers to
apply and adapt this methodology according to their needs, use cases or research
questions. The same is true for many other disciplines beyond building performance
simulation, wherever uncertainty and sensitivity analysis provide a better basis for
decision-making.
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A Appendix

A.1 Probability Distributions

Discrete Uniform Distribution

A discrete uniform distribution describes the probability of ne outcomes of an experi-
ment where each outcome has the same probability (Evans et al., 2000, pp. 155-160).
The PMF of the discrete uniform distribution is (Montgomery and Runger, 2003, p.
70)

p(xi) = 1
ne
. (A.1)

The expected value of a discrete uniform random variable X is

E(X) = b+ a

2 (A.2)

and the variance of this variable is

Var(X) = (b− a+ 1)2 − 1
12 (A.3)

where a, a+ 1, a+ 2, ..., b are consecutive integers (a ≤ b) (Montgomery and Runger,
2003, p. 70).
Figure A.1 shows the PMF and the CDF of a discrete uniform distribution. In

BPS this distribution can be used to select models. An example for this case is
the distribution of the sky radiation where several empirical models can be applied
(Macdonald, 2002, pp. 89-90). Since it is not possible to mix two models, the
discrete distribution is the most applicable distribution in this case. The model
selection is done on the basis of a categorical variable1. Another application could
be the sampling of the number of occupants in a building. This is an example for a
discrete quantitative variable.

Uniform Distribution

The uniform distribution is a bounded continuos distribution where all possible
values have the same probability (Evans et al., 2000, pp. 170-174). The PDF of the

1A categorical variable has a limited number of possible values. An example is gender with male
and female as categories.
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Figure A.1: PMF and CDF of a discrete uniform distribution.

uniform distribution is
p(x) = 1

b− a
(A.4)

where a is the minimal and b is the maximal value.
The expected value of a continuous uniform random variable X over a ≤ x ≤ b is

(Montgomery and Runger, 2003, p. 107)

E(X) = a+ b

2 (A.5)

and the variance of this variable is

Var(X) = (b− a)2

12 . (A.6)

Figure A.2 shows the PDF and the CDF of a uniform distribution. The uniform
distribution might be the best guess when a parameter is poorly defined. However,
this can lead to an overestimation of the uncertainty. Furthermore, the distribution
is widely used for random number generation (Evans et al., 2000, pp. 170-174).

Normal Distribution

The normal distribution is an unbounded distribution. Its expected value (µ) and
its standard deviation (σ) fully describe the distribution (Evans et al., 2000, pp.
145-150). The PDF is

p(x) = 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
. (A.7)
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Figure A.2: PDF and CDF of a uniform distribution U(0, 1).

The expected value of a normal distributed random variable is

E(X) = µ (A.8)

and the variance of this variable is

Var(X) = σ2. (A.9)

Figure A.3 shows the PDF and the CDF of a discrete uniform distribution. The
normal distribution is a widely used distribution. This can be explained with the
central limit theorem. It describes the fact that under most conditions the distribu-
tion of a linear function of errors will tend to be normally distributed if the number
of its components becomes large (Box et al., 2005, pp. 28-29). It is the most suitable
distribution for measured physical data (Macdonald, 2002, pp. 91-92). Therefore
it is a very useful distribution in the field of BPS where temperatures and lengths
are often measured. It is symmetrical and unbounded (i.e., values can be negative).
The latter can be a problem (e.g., a length can not be negative). A solution to this
problem is to truncate the distribution. More details on this will be introduced in
the course of this appendix.

Log-normal Distribution

The log-normal distribution is non-symmetrical and unbounded towards positive
infinity (Evans et al., 2000, pp. 129-133). The parameters of a log-normal distribu-
tion are θ and ω2. These would be the mean and variance in the case of a normal
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Figure A.3: PDF and CDF of a normal distribution N(0, 1).

distribution which is not the case for the log-normal distribution2. In the case of
the log-normal distribution the mean and variance are functions of θ and ω2 (see
Equation A.11 and A.12). The PDF of X is (Montgomery and Runger, 2003, pp.
135-136)

p(x) =

 1
xσ
√

2π exp
(
− (lnx−θ)2

2ω2

)
x > 0

0 x ≤ 0
. (A.10)

The expected value of a log-normal random variable is (Montgomery and Runger,
2003, pp. 135-136)

E(X) = exp
(
θ + ω2

2

)
(A.11)

and the variance of this variable is

Var(X) = exp
(
2θ + ω2

) (
exp

(
ω2
)
− 1

)
. (A.12)

Figure A.4 shows the PDF and the CDF of a log-normal distribution. This dis-
tribution is suitable for describing parameters that cannot be negative. Examples
are the metabolic rate of occupants or the air change rate of a building or zone
(Macdonald, 2002, pp. 93-94).

2This fact can be confusing in the interpretation of the log-normal distribution.
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Figure A.4: PDF and CDF of a log-normal distribution L(0, 1).

Triangular Distribution

The triangular distribution is a bounded distribution and can be described with a
minimum (a), a maximum (b) and a most likely value (c) (Evans et al., 2000, pp.
187-188). The PDF of the triangular distribution is

p(x) =


2(x−a)

(b−a)(c−a) a ≤ x ≤ c
2(b−x)

(b−a)(b−c) c ≤ x ≤ b
. (A.13)

The expected value of a triangular distributed random variable is

E(X) = a+ b+ c

3 (A.14)

and the variance of this variable is

Var(X) = a2 + b2 + c2 − ab− ac− bc
18 . (A.15)

Figure A.5 shows the PDF and the CDF of a triangular distribution. The trian-
gular distribution is an intermediate step between uniform distribution and normal
distribution (Macdonald, 2002, pp. 94-95).

Truncated Distributions

In BPS it might be necessary to restrict the domain of a distribution for uncertain
simulation input (e.g., a normally distributed variable that can not be negative). A
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Figure A.5: PDF and CDF of a triangular distribution with a = 0, b = 1, c = 0.5.

truncated distribution is a conditional distribution of another probability distribu-
tion. It is important to truncate a distribution in a way that Equation 2.10 holds
for the truncated distribution (i.e., normalizing the distribution that the total prob-
ability equals one). Therefore it is not possible to cut the domain without scaling
the distribution up. The truncated distribution is

p(x) =


g(x)

G(b)−G(a) a ≤ x ≤ b
0 otherwise

(A.16)

where g(x) is the distribution that should be truncated and G(a) and G(b) are the
values of the cumulative distribution function at a and b (Nadarajah and Kotz,
2006). An alternative is to cut a distribution at the borders of the domain (a, b) and
attribute the cut values to the borders. However, this overemphasizes these borders.

Other Distributions

Many more distributions exist. The most relevant ones for BPS were introduced
and further distributions are for example: Bernoulli distribution, binomial distribu-
tion, Poisson distribution, geometric distribution, categorical distribution and beta
distribution. Readers interested in these and even more distributions are referred to
Evans et al. (2000) or Montgomery and Runger (2003).
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A.2 Data Analysis for Identifying Dependence
In the literature, correlations are often employed to describe the dependence between
different variables (e.g., Saltelli and Tarantola 2002; de Wit, 2003, p. 36; Herkel et al.
2008). Correlations have to be analyzed carefully to avoid incorrect interpretation
of relationships between variables. A variable X can be correlated with a variable
Y , solely because X and Y are each dependent on another variable Z (Good and
Hardin, 2003, p. 134). Correlations can be quantified with Equation 2.5 and 2.6.
The correlation coefficient is a measure of linear relationship between two random
variables and can vary between −1 and +1. If rXY 6= 0, the analyzed variables
are correlated. When |rXY| = 1, the points of a scatter plot fall on a straight
line. A positive rXY indicates a positive gradient and a negative rXY indicates a
negative gradient of this line (Montgomery and Runger, 2003, pp. 174-177). If two
variables are independent, it can be inferred that the variables are not correlated.
However, rXY = 0 does not imply that the variables are independent (Montgomery
and Runger, 2003, pp. 176-177). Therefore, the correlation coefficient is not suitable
to test data for dependence among variables.
Tree diagrams can be used to analyze dependence (Montgomery and Runger, 2003,

pp. 21-25). In tree diagrams, nodes represent events or certain outcomes of random
variables. The path to a node indicates the probability for the event.
A test procedure involving tree diagrams consist of the following steps:

(I) Plotting a scatter plot matrix of all variables and visually inspecting of the
shape of the variables plotted against each other.

(II) Discretization of the variables into appropriate intervals to obtain categorical
variables.

(III) Drawing a tree diagram with all categorical variables and the assumed (e.g.
expert knowledge) dependence structure.

(IV) Testing whether Equation 2.13 holds.
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A.3 Cost Functions

Figure A.6: Cost functions dependent on the additional insulation thickness of the
building envelope elements.
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A.4 Nomenclature

Abbreviations

AHU Air handling unit
ANOVA Analysis of variance
AR Autoregressive
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
BPA Building performance analysis
BPS Building performance simulation
CBA Cost-benefit analysis
CDF Cumulative distribution function
COP Coefficient of performance
CPU Central processing unit
DAE Differential algebraic equation
DHW Domestic hot water
ECBCS Energy Conservation in Buildings and Community Systems
ECDF Empirical cumulative distribution function
EnEV Energieeinsparverordnung
FF Factor fixing
FM Factor mapping
FP Factor prioritization
GNU General Public License
HVAC Heating, ventilation and air conditioning
IBPSA International Building Performance Simulation Association
IEA International Energy Agency
LHS Latin hypercube sampling
MA Moving average
MC Monte Carlo
MCF Monte Carlo filtering
MSL Modelica Standard Library
OAT One-at-a-time
PDF Probability density function
PHPP Passivhaus Projektierungspaket
PMF Probability mass function
Q-Q plot Quantile-Quantile plots
R1-C1 One-resistor/one-capacitor
SA Sensitivity analysis
SARIMA Seasonal autoregressive integrated moving average
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Abbreviations continued

SHM Simple hourly method
TABS Thermo-active building systems
TMY Typical meteorological year
UA Uncertainty analysis
UQ Uncertainty quantification
VB Variance-based
VC Variance cutting

Notation

a Coefficient of an autoregressive part of ARIMA model
a Minimal value of a uniform or a triangular distribution
Aceiling Ceiling area
Afloor Floor area
ANFA Net floor area
Aroof Roof area
Awall Area of the outside walls
Awin Window area
ACH Air change rate
ACH AHU Air change rate provided by an air handling unit
ACH inf Infiltration air change rate
ACH nat Natural air change rate
ACH vent Scaling factor for the air change rate
ACH 50 Infiltration rate at 50 Pa pressure difference
AIC Akaike information criterion
A Matrix used for the experimental design of the EE method

and the VB method
aji Element of matrix A (j indicates the row number and i

the column number)
A(i)

B Matrix (all columns from matrix A except column i that
is from matrix B)

A/V Envelope area to volume ratio
b Coefficient of the MA part of an ARIMA model
b Maximal value of a uniform or a triangular distribution
B Behavioral subset of the simulation output
B Non-behavioral subset of the simulation output
B Matrix used for the experimental design of the EE method

and the VB method
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Notation continued

bji Element of matrix B (j indicates the row number and i
the column number)

c Mean value of a triangular distribution
C Heat capacity
cp Specific heat capacity
Ctrlpump Control signal for a pump
CF Future cash flow
CF t Future cash flow at time t
c() Cost function
Cov(X,Y) Covariance of X and Y
d Order of differencing for an ARIMA model
D Order of differencing for a seasonal ARIMA model
D Kolmogorov-Smirnov test statistic (maximum distance

between two CDFs)
di Point sample density in an arbitrary hyper-parallelepiped
dt Theoretical sample density
E(X) Expected value of a random variable X
EE i(X) Elementary effect for parameter Xi

EX∼i(·) Mean of argument (·) taken over all factors except Xi

EX∼i(VarXi(Y |X∼i)) Expected variance that would remain if all parameters
apart from Xi were treated as single-value estimates

F(X | B) ECDF of the behavioral subset
F(X | B) ECDF of the non-behavioral subset
f() Generic function with its parameters in the bracket
GPscale Value to determine the gas price scenario
g(x) Distribution to be truncated
G(a) Value of the cumulative distribution function at a
G(b) Value of the cumulative distribution function at b
Htr Heat transfer coefficient
H ′T Specific heat transfer coefficient (EnEV)
i Arbitrary index
Ishad Irradiance threshold for control
IC Investment cost
IC scale Scaling factor for the investment cost
Inflscale Value to determine the inflation rate scenario
Inflt Average inflation rate from year 1 until year t
Inflz Inflation rate for year z in the period from

year 1 till year t
IR Nominal interest rate
j Arbitrary index
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Notation continued

k Number of analyzed parameters
l Number of levels for factorial design
L Value of the likelihood function
ln(L) Log likelihood
L(θ, ω2) Log-normal distribution with its parameters θ and ω2

ṁDHW Mass flow rate of the domestic hot water
Min Input matrix
Mout Output matrix
ME i Main effect of a factorial design
N Sample size
n Life cycle in years
ne Number of outcomes of an experiment
nECDF Number of ECDFs
ni Number of sample points in an arbitrary interval
nSolFrac≤20% Number of the MC simulation results for which the solar

fraction is ≤ 20%
nsub Number of subsets
NPV Net present value
N(µ, σ) Normal distribution with its parameters µ and σ
N+ Set of positive natural numbers
occ Number of occupants or the offset value for occupancy
p Order of the AR part of an ARIMA model
P Order of the seasonal AR part of an ARIMA model
Pi Arbitrary hyper-parallelepiped
p Vector of parameters and/or constants
PDV Present discounted value
PDV benefits Present discounted value of the benefits
PDV costs Present discounted value of the costs
p(x) Probability mass function or probability density function
P(SolFrac ≤ 20%) Probability that the solar fraction is > 20%
q Order of the MA part of an ARIMA model
Q Order of the seasonal MA part of an ARIMA model
qprim Specific annual primary energy demand
qheat Specific annual heating energy demand
qheat,standard Specific annual heating energy demand for the standard

configuration
Qcollector Energy supplied by a solar collector
Qheat Heating energy
Q̇heat Heating power
Q̇int Internal heat gain
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Notation continued

Qsaving Potential energy saving
Q̇sol Solar heat gain
Qtotal Energy demand for space heating and DHW
r Number of trajectories or blocks for the elementary

effects method
rXY Pearson correlation coefficient
s Number of strata for stratified sampling or LHS
SE Standard error
SolFrac Solar fraction
StdDev(X) Standard deviation of a sample X
Si First-order sensitivity index
STi Total sensitivity index
t Time (and year at which cash flow takes place)
Te External temperature
Ti Internal temperature
TOAT Outside air temperature
Tset Set point temperature
Tsup supply temperature in a heating circuit
U Mean U-value
u(t) Vector of input variables
U(a, b) Uniform distribution with its parameters a and b
Uceiling U-value of the ceiling
Udoor U-value of the door
Ufloor U-value of the ground floor
Uroof U-value of the roof
Uwall U-value of the outside wall
Uwindow U-value of the windows
Ve Gross volume
V̇ve Ventilation flow rate
Var(X) Variance of a sample X
Var(X) Variance value of a random variable X
VarXi(·) Variance of argument (·) taken over the parameter Xi

VarXi(EX∼i(Y |Xi)) Expected reduction of the variance if Xi were treated
as a single-value estimate

X Generic variable
X̄ Arithmetic mean of a sample X
xi Element of a sample X
ẋ(t) Vector of differentiated state variables
x(t) Vector of state variables
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Notation continued

Xi Generic variable or simulation input
(X|B) Subset of the simulation inputs that results in B
(X | B) Subset of the simulation inputs that results in B
X∼i Matrix of all factors except Xi

Yi Generic model output
Y (Xi) Result of a function evaluated at Xi

yt Output of ARIMA model
y(t) Vector of algebraic variables
y(Xi) Output of a OAT experiment for which parameter Xi

was perturbed
Ȳ − Average result of all simulation runs for which Xi was

at its low level (factorial design)
Ȳ + Average result of all simulation runs for which Xi was

at its high level (factorial design)
z Year indicator
α Significance level
∆ Difference
∆i Difference (step size) in the domain of an input parameter analyzed

with the EE method
∆kpump Hours of pump operation
∆T Temperature difference
∆Tset Offset value for the temperature set point
∆UTB U-value correction to account for thermal bridges
ε Noise term
ηHX Efficiency of the heat recovery unit of an AHU
µ Mean value as parameter for the normal distribution
µi Mean value for the elementary effects of one parameter
µ∗i Mean value for the absolute values of the elementary effects of

one parameter
ρair Density of the air
σ Standard deviation as parameter for the normal distribution
σi Standard deviation for the elementary effects of one parameter
Ω Unit hypercube
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